Proceedings of the 7th International Workshop on Pl an9

November 14 — 16, 2012

Bell Labs Ireland
Alcatel-Lucent
Blanchardstown Business and Techonology Park
Snugborough Road
Dublin 15
Republic of Ireland

Editor Eric Jul

Organization
Eric Jul, Bell Labs (local organizer)
Franck Franck, Bell Labs (registration, logistics)

Erik Quanstrom, IWP9.org (web site)

Program Committee
Eric Jul, Bell Labs (co-chair)
Francisco Ballasteros, Lsub, URJC (co-chair)

Sape Mullender, Bell Labs

Balaji Srinivasa

Eric Jul

Jeff Sickel

Jonas Amoson
Thomas Lundqvist
Erik Quanstrom
Richard Miller
Franck Franck
Aram Sadogidis
JesUs Galan (yiyus)
Sape Mullender

Jan Sacha

Dirk Hasselbalch
Tommaso Cucinotta
Nilo Redini

Gorka Guardiola Muzquiz
Andrés Dominguez

Participants

balaji.srinivasa@gmail.com
eric.jul@cs.bell-labs.com
jas@corpus-callosum.com
jonas.amoson@hv.se
thomas.lundgvist@hv.se
guanstro@quanstro.net
miller@hamnavoe.com
franck.franck@alcatel-lucent.com
aram@privatdemail.net
yiyu.jgl@gmail.com
sape@plan9.bell-labs.com
jan.sacha@alcatel-lucent.com
dirk.hasselbalch@alcatel-lucent.com
tommaso.cucinotta@alcatel-lucent.com
nilo.redini@alcatel-lucent.com
paurea@Isub.org
andresdju@gmail.com

Bell Labs Ireland

Corpus Callosum Corporation
University West, Trollhattan, Sweden
University West, Trollhattan, Sweden

Miller Research Ltd

Bell Labs Ireland

University of Thessaly
UGent

Bell Labs Belgium

Bell Labs Belgium

Bell Labs Ireland

Bell Labs Ireland

Bell Labs Ireland
Universidad Rey Juan Carlos

Foreword

These are the proceedings of the Seventh International Workshop on Plan 9, IWP9. It took
place November 14" — 16", 2012 at Bell Labs Ireland, at the premises of Alcatel-Lucent in
Blanchardstown Business and Technology Park, Dublin 15, Ireland.

The workshop includes a keynote by Sape Mullender on future trends.

The workshop was organized by Bell Labs Ireland, which much deserve thanks for
providing support, lunch, coffee, meeting rooms, etc. | would also like to thank Erik
Quanstrom for providing support of the iwp9.org web site.

The workshop includes a social program, which, in the spirit of Ireland, includes visits to
classic Irish pubs and classic Irish pub grub. Attendance is down from last year, so some
thought is required concerning future workshops.

The Tentative Workshop program is included below. The program, the proceedings and
other information concerning the workshop can be found at http://iwp9.org.

On behalf of the organizers,

Eric Jul

Table of Contents

Add some Olives to your coffee: A Java-based GUI for the Octopus system
Aram Sadogidis, Spyros Lalis

A light-weight non-hierarchical file system navigation extension
Jonas Amoson, Thomas Lundqvist

Networking in Osprey
Jan Sacha, Sape Mullender

P, a new way to use the Internet
Sape Mullender, Jeff Napper, Francisco Ballasteros

A Performance Comparison of Cryptographic Hashes and Ciphers under Plan 9 and Linux
Franck Franck

A NIX Terminal
Erik Quanstrom

Access Control for the Pepys Internet-wide File-System
Tommaso Cucinotta, Nilo Redini

Atomic increments
Enrique Soriano-Salvador, Gorka Guardiola Muzquiz

11

14

22

29

37

42

56

Planned Program

Overall Program Schedule

Nov 14th:

14:00 Registration (and coffee) in Bell Labs Museum Area

16:00 Welcome + keynote by Sape Mullender, in Shannon room

17:30 Prearranged, shared taxi departs for Maldron Hotel/Generator Hostel

18:45 Start walking from Maldron/Generator toward Mulligans, it is 420 meters and should take about 5
minutes

19:00 Intro to Irish pub + gastropub dinner
L Mulligans Grocer, 18 Stoneybatter, Dublin 7
www.Imulligangrocer.com

21:45 Start walking back from Mulligans to Cobblestone, it is about 400 meters and should take about 5
minutes, well perhaps 10-15 minutes, if you discuss more than a few of the 18 beers on tap at Mulligans,
while walking to the Cobblestone.

22:00 Live Irish Session music at Cobblestone pub (across from Maldron Hotel)
Cobblestone Pub, 77 North King Street, Dublin 7
23:30 Last call at Cobblestone - music usually continues for at least another hour.

Late: Walk home to Maldron, distance is about 70 meters, and should take less than 20 minutes (depending
on how tired you are, some do it in less than one minute...)

Nov 15th
08:45 Prearranged, shared taxi departs from Maldron Hotel.

09:30 talk: Add some Olives to your coffee: A Java-based GUI for the Octopus System, Aram Sadogidis,
Spyros Lalis.

10:15 talk: A light-weigh non-hierarchical file system navigation extension, Jonas Amoson, Thomas
Lundgqyvist.

11:00 coffee break
11:15 talk: Networking in Osprey, Jan Sacha, Sape Mullender.

12:00 Prearranged, shared taxi to Lunch at nearby Market (bring coat in case of rain). Buy lunch (bring
cash). Prearranged, shared taxi back to Bell Labs.

13:45 demo: Richard Miller, Plan 9 on the Raspberry Pi
14:00 Piepea - a new way to use the Internet, Sape Mullender, Jeff Napper, Francisco Ballasteros.
15:00 coffee break

15:20 talk: A Performance Comparison of Cryptographic Hashes and Ciphers under Plan 9 and Linux,
Franck Franck.

16:05 talk: A NIX Terminal, Erik Quanstrom.

17:00 Prearranged, shared taxi to Hotel Maldron/Generator Hostel/Porterhouse, drop you stuff at the hotel
and continue immediately to Porterhouse, OR take your time and walk/take a taxi to Porterhouse

17:40 Start walking from Maldron to Porterhouse it is about 1,200 meters and should take about 15
minutes. Directions: exiting the hotel turn right and go down the plaza until you hit the river. Turn left and
follow the river. At the THIRD bridge (Capel Street) turn right, cross the river on the bridge. The road turns
into Parliament Street, the Porterhouse is on the left, right after you have crossed the bridge. Arrive anytime
between 18 and 19.

18:00 Microbrew at Porterhouse Temple Bar, 16-18 Parliament Street, Dublin 2

19:00 Dinner at Porterhouse, www.porterhousebrewco.com, bring cash.

22:00 Those that want to explore the Temple Bar area of Dublin can merrily walk through it--the
Porterhouse is at the start of the area, just turn left as you exit the Porterhouse and walk east.

Late: Return by walking or by one of the many taxis that are everywhere. Expect to pay between 6 and 9
Euros for a ride back from the Temple Bar area to the Maldron Hotel. Or just walk, it is about 1.5 - 2 km walk.

Nov 16th

9:30 talk: Access Control for the Pepys Internet-Wide File-System, Tommaso Cucinotta, Nilo Redini.
10:15 demo: Richard Miller, Fantasy on an FPGA

10:30 coffee break

10:45 talk: Atomic increments, Enrique Soriano-Salvador, Gorka Guardiola Muzquiz.

11:30 WIP talk: Dirk Hasselbalch

11:45 concluding remarks

12:00 lunch at Bell Labs

Vi

Add some Olives to your coffee: A Java-based GUI for the Octopus
system

Aram Sadogidis
Spyros Lalis

University of Thessaly
Volos, Greece

ABSTRACT

In this paper we describe our efforts to enable Java supported terminals to interact with the
Octopus pervasive environment. In order to achieve that goal, we developed a Java-based
implementation of the Octopus GUI front-end.

1 Introduction

Pretty soon many people will own a large number of smart devices with Internet capability
through the wire or over the air. While having many gadgets can be great fun, the user will also
be faced with the burden of managing a highly decentralized, uncoordinated, heterogeneous
and dynamic device ecosystem. Currently, the problem is typically "solved" by letting the user
act as a mediator between these devices. This approach, apart from not being much fun,
cannot possibly scale to a large number of devices. As another, relatively recent option, data
and applications can be placed in the cloud. However, the flexible exploitation of the hardware
and software resources of other devices remains a challenge.

The Octopus system [1, 2] tackles this problem by applying the principle of centralization
(as the cloud paradigm) in conjunction with an open, simple and flexible resource sharing
architecture. All applications run in a single computer, called the computer, while every other
smart device connects to the computer over the network to provide special resources or act as
interactive terminals for these applications.

Like Octopus itself, the standard GUI terminal support for the Octopus is implemented on top
of Inferno [3]. Even though Inferno has been ported on many platforms (e.g., Linux, Windows,
MacOSx, Plan9, Solaris and BSD), in practice only a few people will go through the installation
process merely so that they can run an Octopus terminal. Moreover, for all practical purposes,
one cannot expect that Inferno will or should be ported on all platforms. However, the Java
runtime environment is being ported, aggressively, on all kinds of platforms and enjoys strong
support from a large part of the industrial world. In particular, a significant share of the
booming smartphone market goes to Android, which comes with native Java support.

With this rationale, we think it is a good idea to extend the arms of the Octopus so that it
can reach out for Java terminals. Aiming for that goal, we developed a Java-based imple-
mentation of the Octopus GUI front-end, named JOlive (after Olive), through which one can
interact with all the applications running on an Octopus computer (which can run anywhere in
the net/cloud). In addition, we ported JOlive on Android thereby enabling a smartphone to act
as yet another terminal device for the Octopus, while keeping the native look & feel. Besides
dealing with issues specific to the Android environment, the smartphone version addresses
the problem of limited screen real-estate, by allowing the user to "pull” the Ul of just a few or
perhaps even a single application in order to enjoy a more focused and efficient interaction.

Proceedings of the 7th International Workshop on Plan 9 1 Bell Labs Ireland, November 14-16, 2012

Terminal

Inferno OS \\
Octopus ‘_'H

UpperWare Namespace
Server

[s=<0p protocol ™, PC

& = = m| WebDAV' -~ i
4
Z 3\

emgengn g

allmll wllm

, A Host OS 4 —
/ A Resource File
,l “ Local FS ’ \
-.‘ = orowsey
”l V —_—
4 = A

Terminals

m

Figure 1: Various terminal resources connect to the central PC and export resources.

In the following we give a brief overview of Octopus and the Octopus Ul system. Then, we
proceed to describe our Java-based implementation and the respective Android port. We close
the paper with some reflections on future work.

2 The Octopus in brief

The Octopus system [1, 2] aims to provide a single and homogeneous (for the application
programmer) yet heterogeneous and ubiquitous (for the user) multi-device computing envi-
ronment. Rather than pretending that all devices are equals, and trying to support a peer-to-
peer interaction between them, Octopus distinguishes a single node, called the computer, as
the center of the personal computing universe, where everything else is connected to. Fig-
ure 1 shows an example. The connections between all other devices and the computer are
implemented using the Styx [4] and Op [5, 6] protocols (the latter being designed for long-
latency links), which support the abstraction and access of resources in the form of synthetic
file systems.

All applications run on the computer. Hence the user is relieved from the frenzy of download-
ing, installing and managing different applications (including their state and data) on different
devices. Moreover, the user can attach, at any point in time, various devices to the computer,
in which case their resources automatically become visible to the applications running there.
While switching-off devices or bad connectivity will lead to the loss of these resources, such
mishaps do not lead to nasty failures or a corruption of crucial application runtime state.

Octopus is built on top of Inferno [3] which in turn runs directly on bare metal or hosted on
popular operating systems. Indeed, this large host base is exploited to implement a so-called
UpperWare approach [7] for connecting legacy devices to the Octopus computer. More con-
cretely, an Inferno-based software layer, placed on top of the native OS, abstracts and exports
various hardware and software resources of the device in the form of a synthetic file system
that speaks Styx or Op; of course, local access of these resources occurs though the host OS.
This concept is illustrated in Figure 1. It is worthwhile noting that legacy applications can
also be wrapped as resources (provided they can be accessed through the host OS interface),
making it possible for them to be exploited from within Octopus applications and, conversely,
applications (or the user) can exploit Octopus resources through a file system interface.

One example of an UpperWare device exploiting a host application resource is the browserfs [8,
9]. Its purpose is to control the web browser of a terminal in order to replicate its state
(bookmarks, history, etc) to other terminals. The UpperWare driver, with the support of host
command scripts, stores in regular disk files the state of the browser. These state files are
accessible through the Octopus namespace by other terminals, who re-export them to their

Proceedings of the 7th International Workshop on Plan 9 2 Bell Labs Ireland, November 14-16, 2012

User commands

Figure 2: Example of a tree served by Omero and used by Olive on an Octopus terminal.

host systems over WebDAV.

Octopus employs the file-system abstraction for yet another purpose, namely to implement
its window system, called Omero [10]. Omero serves a file tree with separate directories rep-
resenting different virtual screens and a hierarchy of graphical components, known as panels,
each being represented in turn by a directory with a control file, and other optional files de-
pending on the type of the panel. A typical Omero file hierarchy is shown in the left part of
Figure 2.

Notably, the architecture of Omero enables a number of interesting functionalities, such as: (i)
migrating any part of an application's Ul to any terminal simply by moving the corresponding
filesystem hierarchy branch to the directory for the screen assigned to this device; (ii) repli-
cating parts of the Ul on different terminals by copying panel directories to multiple screens;
(iii) reusing powerful tools, e.g., tar to save and restore Uls, or find to locate windows with
a certain title; and last but not least (iv) offering a familiar and easy-to-use API for writing
GUI applications without bothering the programmer with the actual physical placement of the
Ul on one or more screens.

Omero does not draw and does not interact with the user. This functionality is delegated to
the viewer component of the window system, called Olive [10] which runs on terminal devices.
Olive is the only program that knows how to draw, how to interact with the mouse and the
keyboard, and how to graphically manifest different types of panels. It initializes the graphical
window based on the virtual screen to which it is attached to. From that point onwards, it
maps the local keyboard and mouse events to the corresponding file operations on Omero's
panels, and receives notifications about any Ul updates through the Omero event channel file.

Finally, Octopus comes with its own shell, called Ox [11], which can be used to browse the
file system, edit, and execute commands. The command language of Ox consists of some
built-in commands, Sam commands, host OS commands and Inferno commands. The user
can type and execute these commands explicitly, or through the tag and panel operations of
the window system viewer.

Proceedings of the 7th International Workshop on Plan 9 3 Bell Labs Ireland, November 14-16, 2012

'

T

Figure 3: The three terminal variants with their respective Ul screenshots.

3 The Java Octopus Terminal

Arguably, the Octopus system's effectiveness increases proportionally to the number of re-
sources integrated to the global namespace. In order to broaden the spectrum of potential
resources, we have implemented a Java-based GUI for the Octopus system. By doing so, we
enabled Java-supported devices to export display resources (i.e. screen space) to the Octopus
environment. The current implementation can be extended in order to expose other resources
too (Section 4).

There are quite a few advantages of a Java-based approach compared to the original Inferno-
-based. A Java developer has the luxury to choose from many GUI toolkit options (AWT, SWT,
Swing, Apache Pivot, JavaFX, Qt Jambi) whereas an Inferno developer's options are rather lim-
ited. One other technical advantage is the easier installation of Java virtual machine and its
applications. Also there are available additional JavaVM-based languages to choose from, like
Scala, Jython, Groovy, etc.

It should be noted that by including the Java platform as an alternative underlying software
technology, we aim to expand the Octopus development opportunities, not to replace the
Inferno-based terminal. Having said that, the number of mobile platforms supporting Java is
an "audience" that should not be easily neglected.

JOlive is an Omero tree viewer, implemented in Java. The first version we've developed is
based on Java Standard Edition version 6 (JavaRE-1.6 virtual machine) and the Swing graphical
toolkit. The second version is focused towards the Android 2.2 platform and therefore it is
based on the Dalvik virtual machine and the Android graphical toolkit. Both versions use JStyx!
to communicate with Omero. The Figure 3 provides an overview of the two implementations
compared to Olive.

1)Styx's port to Android required some tweaking (Section3.2.3).

Proceedings of the 7th International Workshop on Plan 9 4 Bell Labs Ireland, November 14-16, 2012

An object of this class corresponds to a directory that represents a
OPanel panel. It contains the functionality to invoke ctl commands, retrieve
data and panel related attributes.
This class represents the olive file served by Omero. It runs on a
. dedicated thread and it is responsible to receive update messages,
OOlive , :
demultiplex them and pass them to the corresponding JOPanel ob-
ject.
Merop These three classes encapsulate the information related to the event
MeropCtl messages generated by Omero. MeropCtl and MeropUpdate are de-
rived from Merop, effectively unpacking/packing the messages to a
MeropUpdate
ctl or update type.
OAttrs OAttrs encapsulates the attributes that a panel may have and OUtils
OUtils contains debugging functions.

Table 1: This table presents the omero package class description for the desktop JOlive.

3.1 JOlive for the desktop

JOlive maintains a bidirectional communication with Omero that implements the action-effect
feedback loop. There is the user action notification which occurs whenever the user interacts
with the GUI and the Ul update notification whenever a change occurs to the Omero synthetic
file system. The first data flow updates the Omero tree based on the user's actions, and the
second updates the terminal's GUI based on events generated by the window system.

The graphical components presented by JOlive, have the corresponding action event listen-
ers which invoke the corresponding remote commands. So, in an event-oriented fashion the
Omero tree is updated as soon as an event is triggered by an action (e.g. a button click).

The update notification data flow path is more complex. When the filesystem is updated, ei-
ther by an application or a viewer, Omero generates event messages which mirror the changes,
encoded according to the merop protocol?. A dedicated component is required to receive the
update messages and demultiplex them. The received data are packed merop messages that
are unpacked into Merop java objects.

The implementation is composed of two packages. The omero package which implements
the synthetic file system communication part and the ui package that implements the visual
part of JOlive. The first is described in table 1 and the second in table 2 and the relationship
between the classes in Figure 4.

3.2 JOlive for Android

In order to port JOlive to the Android platform we had to port the JStyx library first. After some
hacking, we ported it successfully and consecutively we reused, almost intact, the omero
package which is the JStyx dependent part of the implementation. On the other hand, we had
to reimplement the ui package from scratch since the Swing APl is not available on the Android
platform. A side benefit of the reimplementation was that the resulting GUI obtained the native
Android look & feel.

The Android version follows the same design with the Desktop version. The additional classes
that have been implemented, are listed table 3.

20mero defines a data packing/unpacking private protocol in order to transmit messages to Olive.

Proceedings of the 7th International Workshop on Plan 9 5 Bell Labs Ireland, November 14-16, 2012

ui package

omero package

———> Referenced
............ > |nherited

Figure 4: The class dependency of the implementation.

This class is a direct descendant of OPanel and has a reference to the
graphical component corresponding to the Panel. Every object of this
JOPanel class is registered to the OOlive's hashtable in order to be notified if
a related update message arrives. In essence this class combines the
JStyx related stuff with graphical part of the implementation.

This is a customized JPanel component, used to represent the Omero's

JDrawPanel draw panel.

The main class that initializes the window and initiates a connection

JOlive with the Octopus PC.

Table 2: This table presents the ui package class description for the desktop JOlive.

This is the only additional class in the omero package used
OOliveEventHandler to tackle a technical difficulty presented by the Android
runtime (Section 3.2.3).

ActionSwipelListener These two classes implement the command invocation
TextLongClickListener swipe widget (Section 3.2.1)

This class implements the Pull App functionality (Section
3.2.2)

This is a hack employed while porting JStyx to Android (Sec-
tion 3.2.3)

PullAppListener

ConfigureLog4j

Table 3: This table presents the ui package class description for the desktop JOlive.

Proceedings of the 7th International Workshop on Plan 9 6 Bell Labs Ireland, November 14-16, 2012

JOlive

JOlive
Deskt
g (Desktop) (Android)
Olive Write
M P a S t e Write Paste
‘ x m Op en Close Open
Find
Exec Exec Find
Close

Figure 5: The three variants of menu graphical components.

3.2.1 Command invocation swipe widget

The user may click on a margin or tag and invoke commands over the Octopus panels. Al-
though for the desktop version we've followed the traditional right-click drop down menu,
for Android this approach was dismissed as it was rather impractical for touchscreen devices.
Instead we adopted the exact same solution employed in Olive, namely the popup menu that
shows different options in a circle around the point (refer to Figure 5). To select one you must
move the pointer quickly in the direction of the option.

For the Android implementation, in order to invoke a command the user swipes his finger from
the center to the direction of the desired command. In essence, the mouse gesture used in
Olive, is replaced with a swipe action on the touchscreen. From the usability efficiency point
of view, improvements like this make the difference because the menu invocation is the most
frequent action that an Octopus terminal user employs. The three menu variants are depicted
at the Figure 5.

On the technical side, this widget is implemented by a PopupWindow overlaid with a cus-
tomized ImageView that tracks finger swipe actions. The widget is generated when a LongClick
occurs and destroyed when the chosen command is issued. The swipe gestures can be mod-
ified easily by editing the ActionSwipeListener. java file in case tweaking is required to acco-
modate a certain touchscreen's configuration.

3.2.2 Pull function

While the user may have numerous, many tens of open apps, he may wish to use the terminal
to interact with just a few or perhaps even just one app at a time, this is especially meaningful
when using small screens. From this observation emerges the need of a functionality to easily
isolate a small number of application Uls. We've implemented the Pull option for the Android
version which helps the user to select a subset of the system's GUI.

Consider the following motivating scenarios. | want to use my mobile phone to browse and
add an appointment in my calendar that is displayed on the main screen, along with my other
apps. Instead of scrolling through the numerous running application panels, | pull the cal-
endar related panels to the mobile phone's screen. As another example, imagine the user
makes a presentation with a projector and desires to control the slides remotely. He can pull

Proceedings of the 7th International Workshop on Plan 9 7 Bell Labs Ireland, November 14-16, 2012

User Experience Under the Hood

Step 1: Push the menu Step 2: Choose the Pull App
button function N
/
v — = ll@ 830 P £ 3o 7 ull @ 830 PM
JOlive T
col:
— —l—‘ clock il
Ox 173 /usr/sohesado Dup % Ox 173 /usr/sohesado Dup % t. I
no cmds| main :
no cmds : ol ctl
fusr/sohesado tusr/sohesado clock o
lannb
n.dis annb
——\tbla ann.dis
: |aron pemmm———
i _V"'"E T Pullapps
femmmmmma ' openOrCreate ("android")
2. write("copyto /android/row:wins")
‘ o ——— -
Step 4: Press the Pull button Step 3: Check the desired
and you get on your Panels oIiv
screen only the /
selected Apps o =
S & 2 ull (7 830 PM
—1
7 ull # 830 PM
appl
col:
tl
(] clock 2
: AN
/appl/col:0x.173 k=l A
' : \\replication
/appl/col:clock.188 : p N,
android j —
: wins clock
virtual screen
default panels ctl
clock

Figure 6: This Figure illustrates the Pull App functionality, at left the user's perspective, at
right the underlying process.

the next/previous buttons to his Android device and use it as remote control. The same
thing applies to the case of a multimedia player application or anything that has some sort of
graphical control interface and makes sense the remote interaction with that app.

The approach that we adopted in order to implement the pull functionality is based on a popup
dialog in order to assist the user to easily select panels. The procedure can be break down to
the following steps. (i) Push the menu button. (ii) Select the Pull function. Pops up a checkbox
list with the apps running at the PC. (iii) Check the desired apps. (iv) Touch the Pull button
and as a result you get on your screen only the panels related to the selected applications. In
Figure 6 is illustrated the process of "pulling” the clock application.

Under the Hood, JOlive initializes a new virtual screen by creating a directory at the Omero's
root and consecutively issues copyto [11] commands to the selected panels. Omero copies
the file descriptors to the supplied path and generates the corresponding update events. Once
JOlive receives that event messages, it presents the newly initialized virtual screen. After the
pull is invoked successfully, it will receive updates only for the panels present to that virtual
screen, which makes it more efficient.

This effect can be achieved by issuing the appropriate Ox commands. However the extra 30
lines of code or so required to implement this function via a proper dedicated Ul element are
justifiable in order to avoid the tedious task of typing via touchscreens. With this option, the
user with a couple of clicks achieves the result of textual commands that had to be passed
manually to Ox.

Proceedings of the 7th International Workshop on Plan 9 8 Bell Labs Ireland, November 14-16, 2012

3.2.3 Trivia

We faced some technical challenges while porting the implementation to the Android environ-
ment. While porting JStyx to Android we faced a technical problem related to log4j message
logging package because it was incompatible with the Android platform. We had to switch
to the compatible alternative that required the android-logging-log4j and slf4j-android along
with ConfigureLog4j.java code that configures said packages.

One other unexpected problem caused by the Android runtime environment was the limitation
that only the thread that creates a View object, is allowed to update it. In our original design,
the main thread initialized the graphical window (i.e. created the graphical widgets) and a
secondary thread received Omero event messages and updated accordingly the respective
widgets. This design caused runtime errors so we had to approach the problem in a different
angle. We used a handler object created in the main thread that was asynchronously receiving
update messages from the OOlive thread (Table 1) and updating the GUI accordingly.

4 Future perspective

JOlive is an Omero viewer which is the most important component of a terminal, since it pro-
vides the means to interact with an Octopus system. The following subsections describe briefly
some interesting resources and other terminal related extensions that can be implemented in
order to increase the effectiveness of the Java terminals.

4.1 GPS resources

Modern mobile phones have GPS capabilities. It seems promising, from a pervasive comput-
ing environment point of view, to expose the GPS tracking service to the system. The Android
terminal could export its GPS coordinates through a passive UpperWare resource driver to the
global Octopus namespace, with the intention to enhance the smart space characteristics of
the system. Assuming the user carries his phone with him, the system could then automati-
cally infer the location of other mobile computing devices, such as laptops, cameras or other
wearable sensors, which in turn could be exploited for context-aware computing purposes.

4.2 JOp

A Java implementation of the Octopus protocol seams interesting. Op is preferred instead of
Styx when high latency communication links are encountered. Certainly, it would be interest-
ing to create a Java implementation of Op, at least the client part, which is a useful tool on
its own. Indeed, especially the Android version Java terminal could greatly benefit from an Op
implementation, given that it will typically communicate with the Octopus computer over WiFi
hot-spots or the cellular network (e.g. 3G data transfer network).

4.3 Remote control by voice

The Octopus experiments with the notion of integrating voice support to the system. Smart-
phones have decent voice recording capabilities. A possible extension of the Android terminal
would be to implement the functionality to take advantage of that capability. If we are able
to export the voice recording resource of our phone to the Octopus system, assuming there
will be a decent audio command server implementation, then the Android terminal would of-
fer many practical applications. In a "smart" space environment, but also when the user is on
the move, it can be very practical to issue commands to, but also receive messages from the
system, verbally.

Proceedings of the 7th International Workshop on Plan 9 9 Bell Labs Ireland, November 14-16, 2012

4.4 Authentication device

We can exploit the habit of keeping the cell phone within our reach and create an authentication
mechanism resource for the Octopus system. We can device a simple and secure mechanism
for generating uniquely identifiable tokens that are hard to replicate without possessing a
suitable hardware device. One possible way to do this is to combine a user defined touchscreen
gesture, e.d., the user's signature, with the hardware ID of the device and generate a digest
value that authenticates the user's credentials. The digest value does not give away neither
the gesture nor the hardware ID and can be stored to the PC. Even if the secret gesture is
"leaked", the token can't be generated without the hardware ID of the user's phone, and vice
versa. This resource can be wrapped with a passive UpperWare driver and exploited by other
system resources that require a more secure authentication mechanism.

References

[1] Francisco J. Ballesteros, Spyros Lalis, and Enrique Soriano. Building the Octopus. GSyC
Tech. Rep, 2006-06.

[2] Francisco J. Ballesteros, Pedro de las Heras, Enrique Soriano, and Spyros Lalis. The Oc-
topus: Towards building distributed smart spaces by centralizing everything. UCAMI,
2007.

[3] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard Trickey, and Phil
Winterbottom. The inferno operating system. Bell Labs Technical Journal, pages 5--18,
1997.

[4] Rob Pike and Dennis M. Ritchie. The styx architecture for distributed systems. Bell Labs
Technical Journal, 4(2):146--152, April-June 1999.

[5] Francisco J. Ballesteros, Gorka Guardiola, Enrique Soriano, and Spyros Lalis. Op: Styx
batching for high latency links. IWP9, 2007.

[6] Francisco J. Ballesteros, Enrique Soriano, Spyros Lalis, and Gorka Guardiola. Improving
the performance of styx based services over high latency links. Rosac, Laboratorio de
Sistemas, 2 2011.

[7] Francisco Ballesteros, Gorka Guardiola, and Enrique Soriano. Octopus: An upperware
based system for building personal pervasive environments. Journal of Systems and
Software, 85(7):1637--1649, July 2012.

[8] IEEE Middleware Support for Pervasive Computing Workshop (PerWare). Upperware:
Bringing Resources Back to the System, 2010. in proceedings of the PerCom 2010
Workshops.

[9] Gorka Guardiola, Francisco J. Ballesteros, and Enrique Soriano. Upperware: Pushing the
applications back into the system. IWP9, 2008.

[10] Francisco J Ballesteros, Enrique Soriano, and Gorka Guardiola. Towards persistent, dis-
tributed, and replicated user interfaces in the octopus. IWP9, 2007.

[11] Laboratorio de Sistemas. Octopus 2nd. edition User's Manual, 1 2008. RoSAC.

Proceedings of the 7th International Workshop on Plan 9 10 Bell Labs Ireland, November 14-16, 2012

A light-weight non-hierarchical file system navigation extension

Jonas Amoson
Thomas Lundqvist

University West
Trollhattan, Sweden

{jonas.amoson | thomas.lundgvist}@hv.se

ABSTRACT

Drawbacks in organising and finding files in hierarchies have led researchers to explore
non-hierarchical and search-based filesystems, where file identity and belonging is pred-
icated by tagging files to categories. We have implemented a chdir() shell extension en-
abling navigation to a directory using a search expression. Our extension is light-weight
and avoids modifying the file system to guarantee backwards compatibility for applications
relying on normal hierarchical file namespaces.

1 Introduction

File systems have long been hierarchical, helping both system designers and ordinary users
to group their files and thereby hopefully avoiding chaos. Besides this grouping of related
files, a file path such as /usr/$user/work/telephone.txt is also important in that it uniquely
identifies a file, directory or other named resource within a given name space, by a sequence
of slash-separated strings [3]. While a well structured home directory serves to avoid clutter,
it also means that the user will have to remember and type longer paths in order to specify
files. This is because the same addressing mechanism is used both for storing files as well as
for addressing them later on.

We believe that our user, in the everyday interaction with the computer, could afford some
loss of addressing preciseness for the benefit of having to type less. Instead of entering an
absolute or relative file path, the file or directory of interest may be specified using a much
shorter search expression. For example, the command cd !'mydir will then perform a search
for a subdirectory matching mydir and make the found directory the new working directory
of the process, even if it is located several subfolders deeper down from the current working
directory. If the search matches multiple files, the user simply chooses the desired one, or
refines the search.

The idea of regarding a path name as a search expression is old. Previous work in semantic
file systems or non-hierarchical, tag-based file namespaces [1,2,4] has suggested many ideas
and solutions for navigating through files and directories based on search expressions. How-
ever, these approaches are rather cumbersome to implement and fail to provide full backwards
compatibility with hierarchical file systems.

This paper explores a more light-weight approach of interacting with an existing file system
namespace, using the path name as a search string, but keeping backwards compatibility with
the existing namespace. We argue that our search mechanism would be difficult to implement
in the form of a separately mounted file system since the search capabilities we suggest are
really a user interface feature. To explore our ideas, we have made a simple but yet useful
prototype implementation in the form of a shell extension that enables powerful new ways of
file system navigation.

2 The idea: a file system navigation extension

From a user’s perspective, the search feature we propose is a simple extension of the syntax
of path names used by the shell. In our implementation, we have picked the character “I” as a
prefix to denote a search.

Proceedings of the 7th International Workshop on Plan 9 11 Bell Labs Ireland, November 14-16, 2012

To illustrate the behaviour, consider the following set of directories:

/usr/jam/work/lectures/cs101/mydir/
/usr/jam/work/lectures/plan9/
/usr/jam/work/plan9/

Let us assume that the current working directory is /usr/jam/ and that we issue the command
cd !mydir. This will tell the shell to perform a search for a subdirectory with a name matching
mydir and change the working directory to the specified directory. Further, the command
cd !cs101 would take the user to /usr/jam/work/lectures/cs101 and not to its subfolder
cs101/mydir, keeping the matching directory as shallow as possible.

If there is no unique directory match, the relative paths for all matching directories are listed,
and the user could either use one of them, or refine the search by adding substrings separated
by slashes to the search expression. The command cd !plan9 would for instance match two
directories, resulting in a failed command and a listing of possible alternatives. Refining the
search to c¢d !plan9/lect would succeed and match the folder work/lectures/plan9. Only
folders “below” the current working directory are considered in the search.

We believe that the possibility of searching directly in a path name is more convenient than
the alternative of using existing tools for searching the file system. The command du(7) could
be used by the user to find usable file paths, but the user would most likely not want to invoke
such search commands in the midst of specifying the third file argument of a program to run.
The handiness of fuzzy path searches can be compared with filename completion provided
by INS in rio(1) or tab-completion in Unix shells.

A possible problem with our solution could be the use of directories or file names starting with
the character “!”, thereby needing some way of escaping this character. We are unsure about
the magnitude of this problem however.

3 Related work

Since the invention of hierarchical file systems, many researches have pointed out various
limitations in organising data storage files in a strict hierarchy. Already in 1991, Gifford et
al. [2] presented the idea of a semantic file system where path names can be used as a
search string by the user. For example, by writing cd ext:/c, you go to a virtual directory
containing all files matching the search, in this case having the extension “.c”. Their semantic
file system idea represents a virtual read-only file system containing symbolic links that point
to an underlying regular Unix file system.

Influenced partly by the collaborative tagging found in on-line community sites such as flickr®,
Stephan Bloehdorn and Max Vélkel [1] implemented a file system TagFS where files are not
organised in directories, but where each file is assigned multiple tags by the user. When a file
is recalled later, the tags are used as parts of the path similar to an ordinary hierarchical file
path. Walking the "directory” structure (cd tag) yields a search, and the contents (as displayed
by 1s) shows the possible tags that could be used to further narrow down the search. To
achieve accessibility from different operating systems and easy integration over the Internet,

TagFS is implemented as a WebDAV?-server using the http-protocol.

Margo Seltzer and Nicholas Murphy [4] also suggest the demise of the hierarchy in file stor-
age, and give the ubiquitous Google-search as a prime example. Seltzer and Murphy have
implemented a file system, hFAD, similar to TagFS, based on FUSE3 under Linux.

4 Comparison with related work

Compared to these earlier approaches [1,2,4], our shell extension does not modify the under-
lying file system and thereby maintains full compatibility with an hierarchical namespace.

An important property of our idea is that the cd command will, as usual, take you to an existing
directory. An incomplete search path will make the cd command fail. This means that we
always have a well defined current working directory. The latter is important since some

1Flickr online photo management (http://www.flickr.com).
2Web-based Distributed Authoring and Versioning (http://www.webdav.org).
3Filesystem in Userspace (http://fuse.sourceforge.net).

Proceedings of the 7th International Workshop on Plan 9 12 Bell Labs Ireland, November 14-16, 2012

filesystem operations, like creating new files, will be difficult to support otherwise. This can,
for example, not be guaranteed for the semantic file system presented in [2] since a virtual
folder can be a result of a search returning a union of files from multiple locations. This is true
also for the two other approaches where a directory can be the result of a union of all files
from multiple file system locations.

Another issue with previous approaches is that one file can be identified by many different
path names, which could confuse an old-fashioned application that relies on unique file path
names.

5 A modified shell implementation

As a first attempt of an implementation we have modified the cd (change directory) command
in the shell re(1) to accept a search expression prefixed by an exclamation mark.

In rc, the path is examined before calling chdir(2). If the path is prefaced with an exclamation
mark, the command du(1) is invoked to get a list of directories relative to the current working
directory. The resulting directories that do not match all search criteria are discarded. Then,
the list is further processed to prune sub directories that would overspecify the search. Finally,
if only one path remains, chdir() is called with the remaining path, otherwise the candidate path
names are printed to standard output. The source code for the shell extension and a helper
program dugrep is available at http://cumulus.ei.hv.se/~imjam/ref/spath.

6 Discussion and future work

Our shell extension approach suffers from the nuisance that it is not always possible to nar-
row down the search, given a set of possible paths. For example, consider the two paths:
work/lectures/ and lectures/work/. Navigating using cd !work/lectures would match both
paths without giving the user any possibility of further refining the search. One solution to the
problem would be to force the user to resort to the normal cd-command and simply specify
the precise path. Another solution would be to extend the search syntax and let the user
choose among the alternatives in some way. An interesting observation here is that a set of
well-organised directories would typically not trigger this problem.

There are promises in getting beyond the traditional file hierarchy, using a tagging filesystem,
especially for certain types of personal files such as lecture notes and media files, but the non-
hierarchical tagging ideas might not work as well for directories where the “belonging together”
property of files is more important than the uniqueness of individual files, such as in a source
code tree.

We believe that the search extension idea, as presented in this paper, would be difficult to
implement as a synthetic file server. To do so, it would require some kind of “virtual folders” to
represent searches, possibly leading to problems with file creation and unique identification of
files.

In the meanwhile, we have already grown accustomed to the handiness and simplicity of
the search-path extension, and will try to develop it further, with general file and directory
search-expansion for all command-line arguments. Another open issue is how the our search
capabilities can become integrated with filename completion as provided by INS in rio(1) or
tab-completion.

References

[1] S. Bloehdorn, O. Gorlitz, S. Schenk, and M. Volkel. Tagfs — tag semantics for hierarchical
file systems. In Pro. The 6th International Conference on Knowledge Management (I-
KNOW 06)., 2006.

[2] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’'Toole, Jr. Semantic file systems. In
Proceedings of the thirteenth ACM symposium on Operating systems principles, SOSP
‘91, pages 16-25, New York, NY, USA, 1991. ACM.

[3] R. Pike and P. Weinberger. The hideous name. In USENIX Summer 1985 Conference
Proceedings, page 563, Portland Oregon, June 1985.

[4] M. Seltzer and N. Murphy. Hierarchical file systems are dead. In Proceedings of the 12th
conference on Hot topics in operating systems, HotOS’09, pages 1-1, Berkeley, CA, USA,
2009. USENIX Association.

Proceedings of the 7th International Workshop on Plan 9 13 Bell Labs Ireland, November 14-16, 2012

Networking in Osprey

Jan Sacha
Sape Mullender

Alcatel-Lucent Bell Labs
Antwerp, Belgium

Abstract

Network links have more and more bandwidth while processor frequencies do not increase
significantly and thus the best way to improve networking performance is to process packets in
parallel on multicore machines. This paper describes a networking architecture where incoming
network traffic is demultiplexed to user-level network protocol stacks running on different cores
using a software packet filter and multiple hardware receive rings. Such architecture allows
efficient use of the network interface controller, processor caches, and memory, enabling very
efficient and scalable networking. This architecture has been implemented in the Osprey
operating system.

1 Introduction

Networking stacks in many operating systems were designed when networks were slow and machines
typically had a single CPU with one core. As a consequence, the networking code often has a
monolithic, centralized structure where concurrent access is guarded by locks. However, hardware
realities are changing. Network links have increasingly high bandwidth and require more and more
computing power to process packets. Since processor frequencies do not increase significantly, but
the core count per machine grows quickly, the most straight-forward way to improve networking
performance is thus to process packets in parallel.

Parallelizing the networking stack is challenging, however, because the networking code can
be invoked concurrently from multiple different contexts: User applications pass their requests to
the stack using system calls; Packets asynchronously arrive from the network and are typically
signaled by interrupts; Finally, protocols such as TCP require timers, which again are delivered
asynchronously. Accessing shared networking state from multiple CPU cores is expensive due
to the cache coherency semantics. Further, locks prevent parallel execution and might waste a
significant fraction of CPU cycles in case of contention.

Hence, in order to achieve high throughput, the networking stack should be organized so that
cores share and synchronize as little as possible. A few novel architectures have been proposed
recently to reach this goal. In the IsoStack [9] and netmap [6] frameworks, the networking function-
ality is delegated to a single process which serializes requests to avoid locks and cross-core sharing.
In NewtOS [3], cores specialize at performing particular functions, such as filtering packets, run-
ning IP, or TCP. In the Affinity Accept design [5], network traffic is divided between symmetrically
running cores using hardware support so that each packet is processed on one core only. This latter
approach has been shown to allow very high throughput and scalability.

In this paper, we describe an architecture where incoming packets are demultiplexed in software
using a packet filter and delivered to a protocol stack running in the application’s address space.
Such a design does not require hardware support but allows processing packets in parallel with very
little inter-core sharing. We describe optimizations in which applications can own private Ethernet
buffer rings and use hardware scatter-gather capabilities to avoid memory copying, increasing
overall throughput. Our architecture is implemented in the Osprey operating system [7] but we
believe it can be ported to other operating systems as well.

Proceedings of the 7th International Workshop on Plan 9 14 Bell Labs Ireland, November 14-16, 2012

CPUCore ! CPUCore ! GPUGCore CPUCore ! CPUCore ! GPUCore ! CPUCoe ! CPUCore

Protocol

'
User App Stack —L) App User

H
..

' ' ' ' ' '
Kermel : : Kernel | Driver I_:_)| PF I_:-)| P I_:_)| TCP | :

H H H H H H
................... [« b S, e« S AU U SRR
Hardware Hardware

NIC
' ' ' '
(a) IsoStack (b) NewtOS
CPU Core H CPU Core H CPU Core CPU Core H CPU Core H CPU Core
' '
H H App ! App : App
User H H User
: : Protocol Protocol | ¥ Protocol
| App H App H App Stack ' Stack ! Stack
oo T ______ e T ______ e T ______________________ feenee ‘\/J'A
; i Y ; H
' ' ' ' '
' ' ' ' H
Protocol H Protocol H Protocol H H H
Stack H Stack H Stack H PF H 1
Kernel H H Kernel ' H '
' ') ')]
Driver ' Driver ' Driver ' Driver .ot
H H H '
' ' '
"""""""""" N S 1
' ' ' '
Hardware H H Hardware H H
' NIC ' ' NIC '
' ' ' '
(c) Affinity Accept (d) Osprey

Figure 1: Networking stack organization in sample operating systems.

2 Related Work

The earliest approaches to high-speed networking came from the area of high-performance comput-
ing (HPC) where high-bandwidth and low-latency networks, such as MyriNet or InfiniBand, were
used to connect powerful compute nodes. Since general-purpose networking stacks in commodity
operating systems turned out to be too slow to handle traffic generated in these systems, new net-
working architectures were developed. HPC applications typically were allowed to interact directly
with the network interface controller to bypass kernel abstractions and reduce packet processing
overhead. These approaches often provided very little application isolation and security because
all hardware was usually owned and controlled by a single HPC application [11, 4, 1].

Today, high-speed networks such as 10G Ethernet become commodity and support for them is
added to general-purpose operating systems such as Linux. Figure 1 summarizes a few networking
architectures that allow fast packet processing.

In IsoStack [9], the networking stack runs in a single process which serializes events coming
from user applications (via asynchronous message queues), the network interface, and the operating
system (timers). Such an arrangement allows IsoStack not to use locks and minimizes intercore
sharing, allowing efficient use of CPU caches. However, the IsoStack approach does not scale
because it can utilize only one core. Similarly to the IsoStack, Osprey runs networking stacks in
user processes, but it divides incoming traffic using a packet filter and runs multiple stack instances
in parallel to take advantage of multiple cores available in hardware.

NewtOS [3] partitions the networking stack based on functions. Each functional component,
such as a device driver, packet filter, IP implementation, and TCP engine, runs on a different core.
Network packets are processed by multiple cores in a pipeline. Since cores share very little state
and communicate using asynchronous message queues, they can run in parallel. However, this
design increases packet processing latency, as every packet traverses multiple cores, and is not able
to utilize more cores than the number of networking stack components.

In the Affinity Accept framework [5] all cores perform the same function but network traffic is
multiplexed between them using multiple hardware receive queues. Each core maintains a fraction
of the networking state using lock-free data structures. Heuristics, such as packet stealing, are
developed to match incoming packets with receiving applications and to balance the load between

Proceedings of the 7th International Workshop on Plan 9 15 Bell Labs Ireland, November 14-16, 2012

CPU cores. This approach scales very well and hence enables high throughput. Similar to Affinity
Accept, Osprey uses hardware receive queues to multiplex traffic, but it also allows multiplexing in
software using a packet filter. Further, Osprey runs protocol stacks in the user space for benefits
such as simplified memory allocation, application checkpointing, restarting, and migration.

Netmap [6] is a framework which allows an application to send and receive packets from a
network interface very efficiently. It allocates all packet buffers statically at initialization time
and maps them into the application’s address space to avoid copying. The application receives all
network packets from an Ethernet hardware ring and returns empty buffers. The kernel does not
multiplex traffic. In Osprey, we use a similar technique to optimize key applications, such as file
servers and clients, which can own private Ethernet rings.

Operating systems can improve networking performance by offloading some functions to the
network interface controller (NIC). Such offloading can usually be combined with the techniques
described above. Modern NICs usually provide checksum calculation and verification, interrupt
throttling, header separation, and TCP packet splitting and coalescing. These latter capabilities
are known as Large Send Offload (LSO) and Large Receive Offload (LRO) or TCP Segmentation
Offload (TSO).

Finally, modern NICs support multiple transmit and receive rings (also called queues) where
incoming packets are classified and assigned to the rings based on their source and destination
addresses. For example, Intel’s Virtual Machine Device queue (VMDq) technology, intended for
hypervisors running multiple operating systems, assigns packets to rings based on their destination
Ethernet address. Another technology, known as Receive-Side Scaling (RSS), uses a hash from the
incoming packet’s 5-tuple to select the receive ring. Each ring uses its own buffers and requests
interrupts independently, allowing packets to be processed on multiple cores in parallel. Further,
packets belonging to the same connection are mapped to the same ring and are hence processed
on the same core, improving CPU cache performance.

3 Architecture

Osprey’s networking architecture assumes that every network interface has at least one hardware
receive (RX) ring and one transmit (TX) ring. Receive ring zero can be shared by multiple
applications and is multiplexed by a packet filter. Other receive rings, if available in hardware, can
be owned by applications in a way similar to netmap: the application receive all incoming packets
with no multiplexing in the kernel, no memory copying, and very little overhead.

Osprey uses only one transmit ring to send all outgoing packets. It does not use multiple trans-
mit rings so that it can decide itself on the order in which packets are enqueued for transmission.
If it used multiple hardware transmit rings it would have to let the NIC decide which packets are
transferred from the rings to the wire.

In Osprey, every application has its own protocol stack which runs in the user space. Similar to
the IsoStack, an Osprey protocol stack can serialize events from the application and kernel, such as
packet transmissions, arrivals, and timeouts, in order to work efficiently with no synchronization
overhead. The protocol stack runs together with the application—in the same address space and on
the same core—which enables zero-copy communication and efficient use of CPU caches. Keeping
the networking state in the user space also facilitates application checkpointing, restarting, and
migration. From the kernel’s view point, the network protocol stack is just part of the application’s
logic. However, in contrast to IsoStack, every Osprey process can have its own protocol stack, which
allows the system to scale better. The only centralized components in the networking architecture
are the device drivers and the packet filter.

Osprey inter-process, inter-task (inside the kernel), as well as user-kernel communication is
provided by asynchronous message queues. Queue implementation details fall beyond the scope
of this paper, however, we mention here that the queues are based on fixed-size shared-memory
buffers and fixed-sized cache-aligned messages (64 byte long currently) which are copied on both
ends during send and receive operations. Messages typically contain pointers to larger structures
such as packet buffers. Asynchronous communication reduces the number of context switches and
hence improves performance. In many ways, Osprey’s system call API is similar to FlexSC [10].

The asynchronous networking API consists of just a few message types. In order to manage a

Proceedings of the 7th International Workshop on Plan 9 16 Bell Labs Ireland, November 14-16, 2012

interrupt_handler()

{
disable_nic_interrupts();
send_message(driver, interrupt);

}
transmit (packet)
{
send_message(driver, packet);
}
driver_main()
{
loop {
message = receive_message();
switch(message.type) {
case interrupt:
while(tx_complete())
send_message (protocol_stack, send_ack);
enable_nic_interrupts();
break;
case packet:
tx_ring_append(message);
break;
¥
¥
}

Figure 2: Driver task pseudocode.

hardware receive ring, an application sends a ringattach message containing an interface number
and a ring number. Similarly, to use the shared ring zero, the application sends a netattach
message containing an interface number and a bitmask describing packets that the application
needs to receive.

An application sends a packet by issuing a send message containing a pointer to the packet
buffer and a length. When packet transmission is complete, the kernel sends an acknowledgment
message to the application. Similarly, to receive a packet, an application sends a receive message
to the kernel containing a pointer to an empty buffer and a length. When a packet arrives from
the network, the kernel—either the packet filter or the driver managing a private hardware ring—
returns a buffer containing packet data. Importantly, the message format is the same for all receive
rings, so that applications can easily switch between using shared ring zero and private hardware
rings.

Finally, although the networking API is asynchronous, we note that it is very easy to build a
synchronous API on top of it. For a synchronous send, an application generates a send message
and waits for a matching reply, and similarly, for a blocking receive, the application generates a
receive message and waits for a corresponding reply.

3.1 Device Drivers

Every network interface has its own driver task which communicates with the controller using ports
and memory-mapped registers. The driver serializes events coming from hardware and applications
to execute efficiently in a lock-free manner. The interrupt handler is trivial. It sends a message
to the driver and disables further interrupts from the interface. The driver, upon receiving an
interrupt message, inspects the hardware, updates the necessary state, and if a packet transmission
or reception is complete, generates a message to the process or kernel task (packet filter) owning
the respective ring. When hardware maintenance is finished, the driver enables interrupts again
and blocks waiting for a message (see Figure 2).

Similarly, the driver accepts messages coming from user processes and kernel tasks. Upon

Proceedings of the 7th International Workshop on Plan 9 17 Bell Labs Ireland, November 14-16, 2012

App1 App2 App3 App1 App2 App3

User Protocol Protocol Protocol User Protocol Protocol Protocol
Stack Stack Stack Stack Stack Stack

send receive

Kernel Kernel

TXring

Hardware Hardware

(a) Sending (b) Receiving

Figure 3: Osprey’s networking architecture overview.

receiving a packet transmission request, the driver appends the packet to a TX ring, and upon
receiving a packet receive request the driver appends an empty buffer to an RX ring.

In the current Osprey implementation, every NIC has a single driver task which maintains one
TX ring and all available RX rings. However, it is possible to further parallelize the architecture
by running a separate driver task per each hardware ring. Since many NICs allow rings to signal
interrupts to different cores, drivers tasks could run truly in parallel and service rings independently,
improving system scalability on multicore hardware.

3.2 Packet Transmission

Outgoing packets normally are allocated and filled in by the protocol stack in the user space.
Kernel tasks are allowed to generate network packets but Osprey rarely uses this possibility. Once
a packet is ready to be transmitted, the protocol stack sends a message containing a pointer to the
packet body to the driver task managing a chosen network interface (see Figure 3(a)).

The driver does not need to copy the packet into the kernel space but must verify that memory
is mapped in and must pin pages to make sure that they are not freed during packet transmission.
Pinning pages in Osprey is simple because memory is never swapped out to disk. Further, the
kernel verifies that the packet is legal. Since the networking API is asynchronous, the application
is allowed to run during packet transmission, and hence could potentially modify the packet after
it has been verified by the kernel. To prevent such a possibility, the kernel copies and transmits
the header to its own memory.

When packet transmission is complete, the device driver sends a reply message to the process
owning the packet. The protocol stack, upon receiving this message, frees the packet buffers and
cleans up its internal state. If the user application uses a synchronous networking API, the thread
blocked on transmission is woken up.

Older NICs might impose constraints on the packet layout in memory. For example, some NICs
require a specific memory alignment, or are able to access only a subset of the address space, or
require packets to be contiguous (i.e., do not support scatter-gather). If user-space libraries do
not allocate packets in the way expected by these NICs, Osprey falls back to a compatibility mode
where the entire packet is copied to the kernel space before transmission.

We are planning to extend the networking architecture to support resource usage management.
In the future, the kernel will limit the number of packets and bytes a process can send per time unit.
When these constraints are not met, the kernel (e.g., device driver) will delay packet transmission.
Further, the kernel will append outgoing packets to the TX ring according to a policy, for example
based on process priority or deadline, to allow low-latency network access to privileged processes.

Proceedings of the 7th International Workshop on Plan 9 18 Bell Labs Ireland, November 14-16, 2012

3.3 Packet Reception

In order to receive network packets, a protocol stack needs to provide empty receive buffers to
the networking infrastructure (see Figure 3(b)). These buffers are allocated in the user space,
and similarly to outgoing packets, must be verified by the kernel. In particular, memory must
be mapped in and pages need to be pinned so that buffers are not freed before or during packet
reception. Additionally, buffers must be large enough to fit maximum-size packets.

Typically, when a protocol stack is initialized, it allocates a number of receive buffers and sends
them to the network interface. Further, each time the protocol stack receives an incoming network
packet, it provides a new empty buffer to the interface. By maintaining a fixed number of buffers
on the receive ring—either hardware ring managed by the NIC driver or virtual ring managed by
the packet filter—the protocol stack reduces the risk of running out of buffers and losing incoming
packets.

3.3.1 Shared ring zero

Ring zero is special because it is owned by a kernel task—the packet filter—which multiplexes it
between user applications. Such multiplexing is necessary because NICs usually provide a limited
number or rings, often only one, and thus may not have enough receive rings for all applications.
Further, enabling hardware rings introduces a cost which might be undesired for lightweight or
short-lived applications.

Osprey’s packet filter classifies packets based on their headers. For each incoming packet, the
packet filter extracts key fields from the header, such as protocol types, source and destination
addresses, and port numbers, and matches them against bitmasks provided by user applications.
The details of the packet classification algorithm and its implementation are described in a separate
paper [8].

When the packet filter determines the receiving application, it checks if an user-space buffer
is available. If the virtual ring is empty, the packet is dropped. If a user buffer is available, the
packet is copied into the user space and a message is sent to the application’s protocol stack. The
original kernel buffer is always returned to hardware ring zero and reused. This way, the packet
filter allocates receive buffers only once—at initialization time.

It is worth noting that currently existing NICs do not have sufficient functionality to implement
a packet filter entirely in hardware. In particular, the Intel VMDq technology allows only very
simple filtering based on the packet’s destination Ethernet (MAC) address, and the RSS technology
uses 5-tuple hashes and hence may map packets belonging to different applications to the same ring,
requiring further demultiplexing in software. Besides, as already mentioned, most NICs support
only a limited number of RX rings.

3.3.2 Private rings

To take advantage of hardware support, Osprey allows applications to use private receive rings.
We associate every RX ring with its own MAC address and use the NIC to demultiplex incoming
packets. Private rings allow much more efficient networking than the shared ring zero. They do
not require software multiplexing, since the application receives all incoming packets, and allow
the application to put user-level receive buffers directly on the hardware ring, enabling zero-copy
receive.

However, using private receive rings has an impact on the application. First of all, every
application owning a private ring must obtain its own IP address—or use a non-IP protocol, such
as ATA over Ethernet (AoE). Secondly, Ethernet broadcast packets have a destination address of
FF:FF:FF:FF:FF:FF, and hence are all delivered to the same RX ring. In Osprey, we configure
the NICs so that broadcast packets are received by ring zero. As a consequence, it is not possible
to run protocols such as DHCP or ARP on a private ring because these protocols rely on Ethernet
broadcast. To work around this limitation, Osprey kernel handles ARP lookups and runs DHCP
on ring zero on behalf of applications that own private RX rings. Given that both ARP and DHCP
are critical to network security, we do not view this as a drawback. Most applications should not
be allowed to generate ARP and DHCP replies nevertheless.

Proceedings of the 7th International Workshop on Plan 9 19 Bell Labs Ireland, November 14-16, 2012

addr(0]
Ethernet

P Chunk 0

ubP
addr[1]

4KB Data Chunk 1

struct Msgpacket { addr(2]
void *addr([4];
ushort len([4];

4KB Data Chunk 2

ushort flags; addr[3)
} . MNP Header Chunk 3
i

Figure 4: Message format for incoming Figure 5: IIP packet layout.
and outgoing packets.

3.4 Scatter-Gather

So far we have assumed that packet buffers are contiguous in memory and hence can be referenced
using a single pointer variable. However, to give more flexibility in packet allocation to the protocol
stacks, Osprey supports packets which consist of multiple disjoint chunks of memory. This feature
allows for example TCP implementations to combine multiple pieces of data from the user space
into a single packet without copying memory.

Messages representing packets have a format shown in Figure 4. A single message can store up
to 4 pointers to packet chunks and 4 corresponding lengths. The limit of 4 chunks is imposed by
the maximum message size in Osprey, which is currently 64 bytes. The additional flags field is
used by the device driver to indicate to the protocol stack which checksums have been calculated
and verified (e.g., Ethernet CRC, IP header, TCP, or UDP).

Sending and receiving packets consisting of multiple memory blocks requires scatter-gather
capabilities in hardware, which most modern NICs already provide. On older hardware, Osprey
can always copy fragmented packets into consecutive buffers to overcome NIC limitations.

Modern NICs are also able to parse incoming packets and split them into separate buffers
containing the headers and payload. In Osprey, we are planning to use this feature to implement
a zero-copy network file protocol called TIP. In this protocol, a packet consists of network protocol
headers, such as Ethernet, IP, and UDP, a IIP header (known as the operations), and data.
Our plan is to align the data buffer on a page boundary so that it can be transferred to an
application’s address space by updating memory maps. While NICs usually recognize common
network protocols, such as IPv4, UDP, and NFS, they regrettably do not support ITP. However,
to make sure that IIP data is properly aligned, we use a packet wire representation shown in
Figure 5. The IIP header is written at the end of the packet. When the network headers are split
off in hardware, data is stored at the beginning of the payload buffer which can be aligned on a
page boundary.

4 Status

The networking architecture described in this paper has been mostly implemented in Osprey. We
have implemented drivers for a number of Intel NICs including the 82598 10GbE, 82576 1GbE,
and older models, as well as the portable kernel components such as the packet filter.

We have also developed a user-space library which provides memory buffer management and
a synchronous (blocking or non-blocking) API on top of asynchronous message transactions. We
used this low-level library to implement a number of basic network protocols, such as DHCP, ARP,
Ethernet, IPv4, and UDP. Finally, we have ported the Lightweight IP library [2] to provide a fully
functional user-level TCP/IP stack for Osprey applications.

Proceedings of the 7th International Workshop on Plan 9 20 Bell Labs Ireland, November 14-16, 2012

5 Conclusion

This paper describes a networking architecture where incoming network traffic is demultiplexed
using a software packet filter and hardware receive rings to multiple network protocol stacks running
in the user space concurrently on different cores. Such architecture allows efficient use of network
interface controllers, processor caches, and memory, enabling very efficient and scalable networking.
The architecture has been implemented in Osprey. We are planning to run a number of experiments
to measure, understand, and validate this architecture’s performance.

References

[1] P. Buonadonna, A. Geweke, and D. Culler. An implementation and analysis of the virtual
interface architecture. In ACM/IEEE Supercomputing, pages 1-15, 1998.

[2] A. Dunkels. Design and implementation of the lwip TCP /IP stack, Feb 2001.

[3] T. Hruby, D. Vogt, H. Bos, and A. S. Tanenbaum. Keep net working - on a dependable and
fast networking stack. In Dependable Systems and Networks, pages 1-12. IEEE, 2012.

[4] S. Pakin, V. Karamcheti, and A. A. Chien. Fast messages: Efficient, portable communication
for workstation clusters and MPPs. IEEE Parallel € Distributed Technology, 5:60-73, 1997.

[5] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving network connection locality
on multicore systems. In FuroSys, pages 337-350. ACM, 2012.

[6] L. Rizzo. Revisiting network I/O APIs: The Netmap Framework. Communications of the
ACM, 55(3):45-51, Mar. 2012.

[7] J. Sacha, J. Napper, S. Mullender, and J. McKie. Osprey: Operating system for predictable
clouds. In Proceedings of the Dependable Systems and Networks Workshops, pages 1-6. IEEE,
2012.

[8] J. Sacha, J. Napper, H. Schild, and S. Mullender. Revisiting user-level networking. In Pro-
ceedings of the 6th International Workshop on Plan 9, pages 17-24, 2011.

[9] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda. IsoStack: highly efficient network
processing on dedicated cores. In USENIX Annual Technical Conference, pages 5-5, 2010.

[10] L. Soares and M. Stumm. FlexSC: flexible system call scheduling with exception-less system
calls. In OSDI, pages 1-8. USENIX Association, 2010.

[11] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a user-level network interface for
parallel and distributed computing. In SOSP, pages 40-53. ACM, 1995.

Proceedings of the 7th International Workshop on Plan 9 21 Bell Labs Ireland, November 14-16, 2012

MnP
anew way to usethe Internet

Sape Mullender
Jeff Napper

Bell Laboratories
2018 Antwerpen

Francisco Ballasteros

Universidad Rey Juan Carlos llI
Madrid

1. Introduction

At the beginning of the 20th century, people went to theatres to be entertained and large numbers of
entertainers (actors, magicians, comedians) travelled the length and breath of the country to amuse
the crowds. In the first half of the 20th century, crowds started going to the movies and actors
could stop travelling and settle in Hollywood. In the second half of the 20th century, radio and tele-
vision created the couch potato. But the entertainment was still scheduled: to watch a particular
item, people had to go to a theatre on the right date, or they had to turn on the TV at the correct
time. Towards the end of the 20th century, recording devices (DVRs, DVDs, ...) gave people the
possibility to be entertained precisely when it suited them in a place of their choice.

And now there is the Internet to make it all even easier and more flexible. It is predicted that,
soon, more than % of Internet traffic will be for the purpose of home entertainment. Where a popu-
lar show was broadcast just once and watched by millions of people at the same time, popular
shows are now beindownloadednillions of times. Such numbers of downloads cannot be sup-
ported by a single server, so the data must be replicated.

Information-Centric Networking is a new research area that sprouted up in response to this mas-
sive downloading of media data- also known asontent ICN is about identifyingwhat data is
being transported in an attempt to allow combining downloads of the same data on the same net-
work links. The approaches vary in the degree to which this is done: the Content-Centric Network-
ing approach of Van Jacobson et al. [2009] probably goes furthest in proposing using named infor-
mation blocks as the primitive building block of a new Internet that routesamnes Services like
Akamai [Dilley et al. 2002] and Velocix locate large data repositories around the world to which
requests for downloads are redirected to shorten the download paths.

All these approaches have in common that the information that is being downloadachesi
and that a nearby copy of the information requested is sought and, if available, used to satisfy the
requester.

We believe thahaminginformation is important and that a future Internet can no longer be based
entirely on the creation of anonymous end-to-end flows between pairs of IP addresses. This is how
it's done today, at least in principle- in practice, there’s a lot of cheating going on: DNS mapping
tricks, redirection, &c. [Kangasharjua et al., 2001].

Making named-information retrieval efficient requires a combination of communication and stor-
age— consumers of content do not ask for the same data at precisely the same moment. To get the
advantage of combining requests for the same data on the same link, that data will have to be buf-
fered somewhere.

Proceedings of the 7th International Workshop on Plan 9 22 Bell Labs Ireland, November 14-16, 2012

_2-

Until now, there was a strict separation of concerns. Netwokssportinformation from one
place to another. File systeratoreinformation for future readers. And processors, along with the
people operating therproduce transform consumeandinterpretthe information.

We argue that there is very little difference between transport and storage. A network moves
data fromthereto here A file system moves it fronthento now. A distributedfile system, in fact,
moves data fronthen and ther¢o here and now

We believe that the distributed-file-system model is an appropriate start for modern-day
information-centric networking. The emphasis is shifting from the network to the information
itself. The network, as well as the storage infrastructures around the network are merely the tools
we use to get the information we seek where and when we want it.

There are three aspects that are characteristic of (distributed) file systems that barely crop up in
discussions of information-centric networking:

1. File systems allow files tanodifiedas well as merely read/downloaded. Content-Delivery Net-
works are typically designed to deliver immutable data. If data is changed at all, it is by mecha-
nisms outside those delivery mechanisms.

2. File systems enforcaccess-contropolicies. The authentication and access control mechanisms
are fundamental to file systems, distributed ones especially, but come as something of an
afterthought to most CDNSs.

3. A final and certainly very important reason for considering a distributed file-system model for
named-information systems is that it is a familiar mottedt most applications we have can
already use Word-processing software, photo-manipulation software, spreadsheets, source-code
management systems, you name it, they can all deal with-flesctually, they can usuallgnly
deal with files. And, as often as not, these applications cannot deal with Internet objects: objects
must be downloaded using a browser, saved to a file and can only then be manipulated by word
processors or what-have-you. Writing objects back to where they came from after modification
is almost beyond contemplation today.

All of that is easy if the objects are files already. On Windows, one could view the objects in
the internet as files in a special driv®:\www.diversiorum.org\sape\index.html ;
on Linux, one can mount the Internet in the local treet/www.diversiorum.org-
/sape/index.html

These three points are important. The Internet is not a secure place today, as all the spam we
receive bears witness to. Firewalls are useful for redirecting incoming connections to the hosts
designed to deal with it, but their protocol filtering (TCP only and then a few ports only) only
serves to hinder performance and doesn’'t add much to security at all.

The importance of using a familiar access model and backward compatibility is also hard to over-
estimate. Named objects are a very familiar model and files and folders even more so. The wrong
that was created when sockets came to Unrieverything was no longer a file witlead andwrite,
but we suddenly hasendandreceiveas well— is being righted by modelling the whole Internet as
a giant file system.

2. NP

We have set out to design a set of protocols that enables the management of named information in

the Internet. The protocols are predicated on the assumption that a large set of autonomous systems
agree on a common set of protocols that achieve the goals of named-information systems: the

recognition and consolidation of duplicated information requests, and that these systems arrange

themselves irfiederationsf systems working together to manage subsets of named objects.

In other words, it is certainly not the intent to build a single, world-wide distributed storage sys-
tem with some sort of central control. The idea is that, based on loose federations of clients, cach-
ing nodes and servers, the goals of content distribution can be met.

But content distribution is not the only issue in today’s Internet. Another important issue is that
proper support for mobility and wireless connectivity are sorely lacking. Mobility implies frequent
address changes and wireless connectivity means that connections can be brittle.

Proceedings of the 7th International Workshop on Plan 9 23 Bell Labs Ireland, November 14-16, 2012

-3-

We are working on a small set of protocols that can replace a large set of protocols used in the
Internet today. Among these are certainly RTP, TCP, HTTP, HTTPS and Mobile IP, but not IP
itself. Our protocols will layer perfectly on top of IP (v4 or v6, with or without UDP).

Media data is one of the most prominent data types in the Internet today and interactive forms of
media data are used in internet telephony, teleconferencing, video calls and more. Supporting the
lowest possible end-to-end latency in interactive media transport is essential (and, if that improves
latency, some data loss should often be tolerated). And low latency is also useful, of course, for all
other forms of interactive communication.

Support formobile devicesmobile data and even servers that move around in the cloud is
becoming more essential all the time. It will not be long before the majority of devices on the Inter-
net is mobile . One thing that characterizes many mobile devices is the use of wireless networks and
the handover from one antenna to another, from one wireless technology to another and from wire-
less to wired owvice versa What is common in all wireless networks is variable latency, variable
reliability and variable bandwidth. And what is common too is that mobiles cannot always hold on
to the same address$I1P is designed to deal efficiently with address and network changes and with
intermittent connectivity.

Security is not built in to any of the lower layers of the Internet. As a result, denial-of-service
attacks are easy to carry out and most corporations need elaborate protection against random incom-
ing connections: there are too many machines in a corporation that are vulnerable to attack.

Firewalls provide two types of protection. They restrict the set of machines that can be contacted
from the outside and they restrict the set of protocols that can be used to contact those machines.
There is no doubt that the first type of protection is eminently useful. As far as the protocol restric-
tions go, there is a tendency to restrict protocols to the extent that HTTP(S) over TCP is almost the
only protocol left and this is leading to the layering of a wide variety of services on top of
HTTP(S). From the viewpoint of protecting resources, this development is of doubtful utility.
Instead, by providing security as an integral part of communication (where anonymity is explicitly
supported but needs to the approval of communicating principals) a great deal of trouble can be pre-
vented. [P does this.

3. MP Protocol Overview

The 1Tp protocol covers the OSI model's Session and Transport layers and perhaps a piece of the
Presentation layer as well. It iscent/servermprotocol in which a client makes requests to a server;

the server carries them out and returns replies. This is a tried and proven communication model in
distributed systems.; Amoeba [Mullender et al., 1990] used it and so did V [Cheriton, 1988h A
client can be an application or a cache. A server can be a cache, a file server or web server, or an
application that provides its interface as a service. If there is a cache between a client and a server,
the client interacts with the cache and the cache (independently, astiariasconcerned) interacts

with the server.

The protocol’s components aBessions, M essage Transactions andOper ations.

Operations are clumped togetheraperatiorgroups and sent as a unit imrequest group After
receiving the group and processing the operations, the server retteps/aroupto the client to
complete thenessage transacti@n Message transactions belong teessionwhich keeps track of
the reliable execution of these transactions, the authenticity of client and server and the manage-
ment of mobility. We’ll discuss the components in turn.

11n today’s Internet, the TCP connections that form sessions for carrying out credit-card transactions over
mobile connections break often enough that merchants always ask for an email address before starting the
actual transaction (so the result of the transaction can be mailed if the connection fails).

2 Message transaction is a term from Cheriton’s [1988] V distributed system, see also RFC 1045

Proceedings of the 7th International Workshop on Plan 9 24 Bell Labs Ireland, November 14-16, 2012

3.1. Operations

The operations are the basic commands for manipulating named objects that wefilesall
whether or not they really are stored on a disk. In our model, files have hierarchical names, they
have contents— an array of bytes— and they have attributes- name/value pairs. The attributes

can have arbitrary names (which are UTF-8 strings) and values (byte arrays); some of the attributes
are predefined, with semantically restricted content, and some may be read-only. Implementations
may place restrictions on the sizes of names and values.

MNP took much of its inspiratior— including the name— from the 9P protocol of Plan 9 from
Bell Labs [Pike et al., 1995]I1P also has the notion of T and R operations, of Tsession, Tattach,
Topen, Tflush and more,

The files areversionedand versions are identified by a signed 64-bit time stamp (in nanosecond
before (negative) or after (positive) the epoch (the start of 3rd millennium). A timestamp tvalue
identifies the version with the highest time stamp less than or equattiat is, the versiorurrent
at timet. Every update of a file creates a new version that becomesitableand visible when the
updates areommitted It is implementation dependent whether non-current versions of a file are
retained, or even whether the current version is retaiaefiles can besynthetic that is, their con-
tent created on demand.

Objects can bepenedor reading and updating; new files can be created by opening them with
appropriate parameters. An open file is identified by a file identifier, FID, which is a small integer.

A read operation transfers file data (identified by FID, offset and size) from the server to the
client. Areplaceoperation replaces a section of the file (identified by offset and size) by new data
(with a given length). Theeplaceoperation can be used to delete slices from a file, insert data into
a file, or overwrite pieces of the file. It was inspired @pstor[lonkov, 2011] and is a more versa-
tile version of thawrite operation familiar from Unix.

Rdattrandwrattr are used to read or create/replace attribute values. Attributes with large values
can also be opened as if they were files in their own right.

When a file isclosed the FID is removed. If the file had been opened for creation/updating, the
close operation also commits the new version: the version becomes immutable and it becomes the
new current version, visible to other users.

There are other operations, but it's probably useful to look at other componentstptheoto-
col suite first.

3.2. Groups

One of the problems encountered in networked file systems is the latency inherent in the protocol:
opening a file, reading a chunk, discovering end-of-file, these often cost a round trip each. Latency
reduction has been a primary concern for us, so extra round trips should be avoided.

This is whatgroupsare all about. A number of descriptions of operations can be concatenated
and sent as a unit. The descriptions of the operations have been cast into forms that allow useful
combining. Anopenoperation, for example, sets the resulting FID tocberent so that aread or
replace operation following it can operate on the file just opened. Téad operation reports
reaching end-of-file to eliminate a round trip just for discovering the end has been reached.

The operations in a group are executed by the server one-by-one, in sequence. If an error is
encountered, further operatiomsthe groupare not executed and a partial reply is returned (with
the error code as the last item).

A request group is sent by the client to the server and has to fit in a single packet (e.g., a UDP
packet). After the server has processed the request it returns a reply group, also in a single packet.
The client is responsible for requesting something that doesn’t overflow the reply packet.

Request and reply groups are identified by a temporally unigge The tag is used by the client
to match the reply to the original request. A client can send many requests simultaneously (but
needs to use different tags for them) and the server may respond to the requests in any order. Oper-
ations that depend on each other must either be sent in one request (in the correct order) or in non-
overlapping round trips.

Proceedings of the 7th International Workshop on Plan 9 25 Bell Labs Ireland, November 14-16, 2012

3.3. Sessions
A session holds the shared state between client and server. This consist of four major items:

1. The authentication state: identities of communicating parties, certificates, and encryption keys
for session-related traffic.

2. The connections between client and server. There may be more than one. Mobiles, that can use
multiple wireless networks simultaneously, can use multiple connections for increased reliability
and faster recovery from connection breakage.

3. The FID space which represents the active files
4. Thetag space which represents the active group operations.

The session is identified by $ession Identifieor SID. Each group message (and the control mes-
sages the protocol uses for making communication reliable) is preceded by the SID. Everything
else in the message may be encrypted with the session key.

Request and reply groups can be used in unreliable networks such as UDP. The session manager
adds reliability as required by control messages, timeout and retransmission.

When connections break and new connections become established, session control messages can
be used to inform the peer of changed addresses or changed connections. A name service, not dis-
cussed here, serves as a backup for existing session participants to find relocated peers and, of
course, for initiating sessions.

4. Caching

Caches are essential components in content distribution systéfdescribes how clients commu-
nicate with caches and how caches communicate with servers, but not how clients choose caches,
what caches do and how caches find servers to fetch content from.

These essential details will be discussed in a separate paper, but a few remarks are in order here.

A first thing to observe is that both caches and routers are in a position of trust: they can poten-
tially modify or steal content as it passes through them. In networks, stealing and tampering are
prevented by encrypting content. Network connections are invariably point to point, so encryption
is easily arranged end-to-eRdThis doesn’'t work well for caches (although it can work under
appropriate circumstances) because the content-distribution function of the cache cannot be exer-
cised if the content arrives encrypted for just one particular consumer. Alternatively, key-
distribution techniques can be used to allow multiple clients to consume and understand the same
encrypted content. Although nothing in our design precludes such tactics, the general assumption is
that a cache must be trusted by client or server (or both). A cache that is not trusted by either, can-
not be trusted not to give away confidential data, nor can it be trusted not to tamper with the data.

If content is public (i.e., giving it away doesn’t matter), it can be protected from tampering by
adding asignatureattribute to the file. Clients can use the signature to verify the authenticity of the
data and caches cannot forge signatures.

Again, the general model assumes a degree of trust. At the start of a session between client and
server (and this also goes for client and cache, cache and cache, or cache and server), client and
server run an authentication protocol of which the intended outcome is that the client knows the
identity of the server it has connected to and vice versa.

If the server is a cache, it is likely that the cache will have to communicate to the server on behalf
of the client. The cache cannot authenticate to the server as the client, but it can show proof that is
has been authorized by the client. In the run of the authentication protocol, the client can provide to
the cache a certificate, signed by the client that authorizes the cache to act (with limited power) on
behalf of the client. A cache trusted by a server may similarly be able to show to the client a certifi-
cate signed by the server.

3 But only if you know what you’re doing. Roger Needham [1993] once obséihvaalnot know to whom
should be credited the important truth ‘Whenever anyone says that a problem is easily solved by cryptogra-
phy, it shows that he doesn't understand’it.’

Proceedings of the 7th International Workshop on Plan 9 26 Bell Labs Ireland, November 14-16, 2012

-6 -

Given satisfactory authentication, many clients can fetch data from a single cache and the cache
will not fetch data more than once from the server. Since the cache is trusted by the clients (or the
server), it can also be trusted to give the information it caches only to clients on the access control
list for that information (file).

Since files are versioned, any version is immutable and safe to cache. Protocol is being designed
to allow caches to cache information abeutich versionis thecurrentone (information that isiot
immutable). This will speed up open.

Caches will also be involved in real-time content distribution, something that could also be
referred to asnulticast The protocols are designed to be capable of fetching dat with an absolute
minimal delay. Caches, moreover, can do read-ahead and this make sure responsiveness is optimal.

A single client cache can be used to access servers all over the network. To direct a cache (or a
client) to the correct server, path name prefixes are used: Each client (and, for purposes of talking
to a server, a cache is a client too) has prefix table with entries of the form { prefix, server}. A pre-
fix is the initial portion of a file name: cs.bell-labs.com/osprey is a prefix of cs.bell-
labs.com/osprey/doc/piepea.pdf. The server in the prefix table is the name of a server or service
(and this could point to another cache). The name allows the client to connect (or reconnect) to the
server or service. To this end, a name is looked up mame servethat provides the address to
use. The indirection here is important for supporting mobility.

More than one prefix could match a give file name (e.g., cs.bell-labs.com/osprey and cs.bell-
labs.com in the example above). The match that is used is alwalgtiest prefix

5. Conclusions

1P is a practical protocol for accessing and manipulating named object. Named objects can be files
in a regular file system, web pages on a web server, microphones and headsets in telephone conver-
sations, or even bank accounts, flight status information, 8B&’s objects resemble files in the

way they are accessed, but they don’t have to be filssd andwrite, just like receiveandsendare

just primitives to get information to where it's needed. The interpretation of the information is left

to the applications and protocols usiTg.

The sessions imrp allow an association between a client and a server to survive temporary com-
munication outages and network-address changes.

The grouping of operations allows very low-latency interactive communication. If HTTPS were
used to fetch a (small) web page, there would be quite a few packet round trips before the actual
data could be transmitted: TCP SYN/ACK, TSL authentication handshake, HTTP GET request and
reply. UsingTrp, the exchange could look like this: The client sends a group with the following
operations:

plaintext encrypted comment
Tsession Client provides process name,user identity, and FID of
authentication (meta)file
Twrite Client writes authentication file with proof of identity and
encrypts a client-server key with server’s public key
Tread Client requests server’s proof of identity (and encrypted
server-client key)
Topen Client identifies web page and opens it
Twrattr Client writes an attribute of the file to provide language and
other preferences
Tread Request to read the web page (automatic close if EOF is
reached)

The server would react with a similar group containing Rsession (with server’s identity), Rwrite
(which acknowledges client’s authenticity), Rread (with server’s proof of ID), Ropen (confirming
existence of web page), Rwrattr and finally Rread with the Web page’s content.

In a single packet round trigrp achieves what requires at least three round trips in HTTP. The
example also serves to illustrate that the file model does not stand in the way of realizing operations
that, at first glance, have nothing to do with actual files (but Unix users are used to that in, for

Proceedings of the 7th International Workshop on Plan 9 27 Bell Labs Ireland, November 14-16, 2012

example, the /proc directory).

The protocol has been designed to work with real-time media streams. It allows a client to initi-
ate downloading a media stream by sending what amounts to a sliding window’s worth of requests
for consecutive chunks of the media file. The server responds to each request when the data
becomes available and, as the replies trickle in, the client replenishes the supply of outstanding
requests.

If the request or reply for a chunk is lost, the client can choose to request it again (if there is time)
or to skip over it by pretending it was never requested (or pretending it has arrived, which amounts
to the same thing). The latency between capturing and rendering can thus be precisely the unidirec-
tional latency of packets from where they are produced to where they are consumed (with a safety
margin to compensate for jitter). This is the best that can be done.

P allows a single protocol running over UDP/IP (or over bare metal) to be flexibly used for a
wide variety of applications. The caching hierarchy is intended to facilitate content distribution.
The design of the protocol itself is designed to give absolutely minimal latency and to allow the
protocol to be used in a much broader context than merely content distribution.

6. References

[Cheriton, 1988]
D. Cheriton,“The V Distributed System'Communications of the ACN1(3), March 1988, pp.
314-333
J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B.Wé€iBlpbally Distributed Content
Delivery’ IEEE Internet Computing(5), pp. 5658 Sep/Oct 2002

[lonkov, 2011]
Latchesar lonkovGostor: Storage beyond POSIXProc of the 6th Intl. Workshop on Plan 9
Madrid, 2011

[Jacobson et al., 2009]
V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Bra{eird
working Named ContehtCONEXT 2009Rome, December, 2009

[Kangasharjua et al., 2001]
J. Kangasharjua, K.W. Rossa, J.W. RobéRsrformance evaluation of redirection schemes in
content distribution networksComputer Communication24(2), February 2001, pp. 26714

[Mullender et al., 1990]
S.J. Mullender, G. van"Rossum, A.S. Tanenbaum, R. van"Renesse and J.M. van~Staveren,
“Amoeba— A Distributed Operating System for the 1990EE Computer Magazing23(5)
May 1990,

[Needham, 1993]
R.M. Needham{Cryptography and Secure ChanrielShapter 20Distributed System£nd edi-
tion, Sape J. Mullender (ed.), Addison Wesley, 1993

[Pike et al., 1995]
R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, P. Winterbottom,
“Plan 9 from Bell Lab§ Computing System&(3), Summer 1995, pp. 224254

Proceedings of the 7th International Workshop on Plan 9 28 Bell Labs Ireland, November 14-16, 2012

A Performance Comparison of Cryptographic Hashes and

Ciphers

under Plan 9 and Linux

Franck Franck
Bell Laboratories, Alcatel-Lucent, Dublin, Ireland.

franck.franck@alcatel-lucent.com

December 20, 2011

Abstract

In this paper we present a comparison of the
throughput of a selection of popular cryptographic
functions in two cryptographic libraries. We
evaluate Crypto++ under Linux and libsec under
Plan 9 to understand how the libsec functions
perform compared to the current state-of-the-art.
We show that Crypto++ is a more mature
implementation than libsec in terms of perfor-
mance. It consistently outperforms libsec in both
cryptographic hash and cryptographic cipher
benchmarks. We also evaluate how much impact
Intel’s new hardware AES extensions has on
performance of the AES cipher, and show speed
gains of 3x to 9x, depending on cipher mode.

We then perform a more detailed forensic analysis
of the AES cipher in both libraries in order to
determine the cause of libsec’s performance deficit.
The conclusion is that the 8c compiler likely causes
much of the slowdown observed under Plan 9.

Keywords: linux, plan9, cryptography, perfor-
mance, throughput, hashing, crypto++, libsec, aes,

sha, rsa

1 Motivation

Cryptography is an important part of computer
security today. With data networks becoming an
ever-more critical part of everyone’s lives, both in
the work environment, and in our personal lives,

Proceedings of the 7th International Workshop on Plan 9

the ability to protect and authenticate data be-
comes more important, and this is what cryptogra-
phy provides.

Data cryptography is nothing new — in fact, it has
been around since ancient times, and dates back
almost 4000 years in one form or another[9], but it
has evolved over time, and in recent decades has
had to be adapted to the age of ubiquitous high-
speed computing.

In this paper, we investigate the state of the art of
cryptographic cipher and hashing performance to
gain insights into the workload required to operate
each cipher and how this compares to current com-
puter hardware, both in terms of processing speed
and network speeds. We do not discuss or compare
the cryptographic primitives in terms of the secu-
rity they provide, as that is well covered in security
literature|[3].

The aim of this paper is to investigate and com-
pare performance in terms of throughput for a se-
lection of cryptographic hashes and ciphers. This
will provide some groundwork for Bell Labs’ re-
search projects within HPC, and high-speed secure
networking for cloud-based operating systems.

1.1 Comparison Systems

As the work presented in this paper is part of Bell
Labs’ OSprey project, which has it roots in the re-
search operating system Plan 9 from Bell Labs, we
are particularly interested in how the current im-
plementations of cryptographic primitives in Plan
9 hold up against what can be considered state-of-
the-art implementations. For this purpose, we have

Bell Labs Ireland, November 14-16, 2012

chosen to use the Linux operating system with the
open-source Crypto++ library[2] as state-of-the-art
comparison base. Crypto++ is a library of a wide
range of cryptographic primitives implemented in
C++, and is available on a variety of operating sys-
tem platforms (with the notable exception of Plan
9). Table 1 lists the benchmarking setups we have

System | CPU Platform AES
Plan 9 E5630, 2.53GHz | libsec no
Linux 1 | E5630, 2.53GHz | Crypto++ 5.6.0 | no
Linux 2 | X5650, 2.67GHz | Crypto++ 5.6.0 | no
Linux 3 | X5650, 2.67GHz | Crypto++ 5.6.1 | yes

Table 1: Test Platforms. We have used two different
hardware configurations: An Intel Xeon E5630-based,
which does not have the AES extensions, and an Intel
Xeon X5650-based which does. Version 5.6.1 of the
Crypto++ library is optimized to take advantage of
these extensions, whereas version 5.6.0 is not.

used in this paper. For the performance compari-
son of Linux vs. Plan 9, we have a system based
on a quad-core Intel Xeon E5630 CPU, which does
not support the proprietary Intel AES extensions
that have been added to newer chips to facilitate
faster operation of the AES cipher. To evaluate
the potential of these extensions, we use a second
test system, based on an Intel Xeon X5650 CPU.
We use two different versions of the Crypto++ li-
brary: One that supports the AES extensions and
one that does not.

2 Performance Evaluation

In cryptography, the most frequently used types of
functions can be divided into two categories:

e Cryptographic Hashes are non-invertible func-
tions used to produce a fixed-length “finger-
print” that is unique to a given input.! Cryp-
tographic hashes are used for collision checks,
for digital fingerprinting, and for digitally sign-
ing content.

o Cryptographic Ciphers are functions used to
conceal or camouflage content by changing it

1Obviously, it cannot be truly unique, as it converts any-
length input into a fixed-length output, but a good crypto-
graphic hashing function should produce an output that is
long enough to make collisions exceedingly rare.

Proceedings of the 7th International Workshop on Plan 9

in some way defined by a cryptographic key.
Only systems in possession of the appropriate
decryption key may change encrypted content
back into its clear-text representation.

We want to evaluate the performance of both types
of functions here, as they are often used in conjunc-
tion in cryptographic software, and thus both have
an impact on the achievable throughput.

2.1 Cryptographic Hashes

As we want to investigate the potential through-
put we can hope to obtain in a cryptographic
application, we take a broad view at the hashing
algorithms available. We have selected nine
different hash functions for our comparison:

Three hashes — MD/, MD5, and SHA1 — have been
deemed broken in a cryptographic sense[11][7][4]
and thus not suitable for use in a cryptographic
context, however, we feel that they may still
serve their purpose if, for example, the operating
environment is knows now to be hostile.

The remaining six — SHA2-256, SHA2-512,
RIPEMD-160, RIPEMD-320, Whirlpool, and
Tiger — have not yet suffered cryptanalytic attacks
serious enough to constitute a compromise of the
algorithms, and are thus considered cryptograph-
ically secure. Figure 1 shows the performance of

Cryptographic Hash Performance
Linux 1 vs. Plan 9 systems

T

s

5

c

x

-
i

6000
5000

4000

3000

2000

Throughput, in Mibit/s

1000

Hash Function

Figure 1: Cryptographic Hash Functions Com-
parison. Throughput of selected hash functions when
hashing a contiguous block of 256 MB of random data.
In general, Crypto++ outperforms libsec by a signifi-
cant margin on the hash function benchmarks.

all nine hash functions from Crypto++ compared

with the five available in libsec. From this figure,
we can clearly see that the legacy hash functions

Bell Labs Ireland, November 14-16, 2012

have a clear performance advantage over their
newer, cryptographically secure siblings. When
comparing the cryptographically secure hashes, the
Tiger hash clearly performs better than the rest
of the pack. This is partly due to its optimization
towards 64-bit architectures[1] (all tests were
carried out in 64-bit environments), but may also
be due to the fact that it provides the shortest of
the secure hashes at 192 bits.

The other lesson to take home from Figure 1
is that the Crypto++ library functions seem in
most cases to be far better optimized than their
libsec equivalents. Only the SHA1 hash is on
par between the two libraries, and at the extreme
cases, Crypto++ provides almost a 6x performance
advantage with SHA-512, and even more with the
MD4 hash.

2.1.1 Conclusion

What we are really interested in here, is the attain-
able throughput we can expect when we use a hash
function on some data. As might be expected, the
answer depends highly on the strength of the hash
function and the desired length of the hashed out-
put.

If the usage scenario is a friendly environment, and
the purpose of the hashing is merely to distinguish
blocks of content or protect against transmission er-
rors, the MD4 hash provides a formidable through-
put, topping out at more than 6 Gibit/s on our test
system. Its 128-bit hash length is sufficient to rele-
gate chances of accidental collisions into the realm
of the unimaginable, especially when compared to
other data verification metric, such as the 32-bit
Ethernet CRCJ[10].

If there is a need for a cryptographically secure
hash, one needs to consider the hash length be-
fore choosing an algorithm; if Tiger’s 192 bits is
sufficient, its performance should make it the clear
choice at more than 3 Gibit/s. If a longer hash
is required, the SHA-2 family (SHA-1 is no longer
considered secure) provide performance in the 2
Gibit /s-range, even at very large hash lengths.

2.2 Cryptographic Ciphers

The cryptographic hashing algorithms we have
examined in Section 2.1 can provide protection

Proceedings of the 7th International Workshop on Plan 9

against undetected changes to data, whether inten-
tional or accidental. If we want to hide, or conceal,
the data, however, we need to encrypt it with a
cryptographic cipher. A cipher is an algorithm that
describes how, given an encryption key, to perform
a sequence of operation on a given piece of data
such that it becomes obfuscated and the original
data cannot be recovered without knowledge of the
cipher and the correct decryption key. For symmet-
ric ciphers, the encryption key and decryption key
are identical, whereas asymmetric ciphers use two
different keys.

For this comparison, we have chosen to evaluate
only the most widely-used ciphers, even though
there are quite a few rarely-used ciphers to choose
from. The restriction has been applied in the in-
terest of brevity of this paper. The ciphers we
have chosen are: Three different AES ciphers (128
and 256-bit CBC-mode, and 256-bit CTR-mode),
two Blowfish ciphers (128 and 256-bit), Triple-DES,
as well as a 2048-bit RSA cipher to represent the
asymmetric camp.

2.2.1 Crypto++ vs. libsec

The first comparison we perform, is a benchmark-
ing of the chosen ciphers on our two cryptographic
libraries, Crypto++ and libsec. Figure 2 shows the
throughput of each of the ciphers on two of our
test platforms. Recall that the Linux 1 and Plan
9 systems run on identical hardware, and there-
fore this is a head-to-head comparison of the two
libraries. As we can see, Crypto++ provides signif-
icant performance benefits in nearly all the bench-
marks. The two CBC-mode AES ciphers achieve
roughly twice the throughput under Crypto++ as
compared to libsec. AES in CTR-mode provides a
whole difference world of performance on the two
systems; on Plan 9 it performs nowhere near as well
as its CBC-mode brothers, while the Crypto++-
edition manages to out-perform the CBC-mode ci-
pher with equal key size.

When it comes to the Blowfish ciphers, the perfor-
mance advantage Crypto++ enjoys shrinks, but it
is still a noticeable 40 percent over libsec. Another
interesting feature of the Blowfish ciphers, is that
the performance of the 128-bit and the 256-variants
is exactly the same, so key size has no impact on
the throughput of Blowfish.

Although, arguably, Triple-DES is the one of the

Bell Labs Ireland, November 14-16, 2012

Cryptographic Cipher Performance
Linux 1 vs. Plan 9 systems

T T
1400 Linux 1 encrypt =——o

L 1200 - Plan 9 encrypt =3 |
] Linux 1 decrypt mmmmm
= 1000 |- Plan 9 decrypt mmmmm
£
o 800
5
2 600 -
o
3 400
=
= 200
0 % B/ % <, S o %
5 S % %, %, o8

v 2 2 . o $ 2

£ S 3 %, <) Q,

® s e %, %, %o

% o o

Figure 2: Cryptographic Cipher Performance on
Linux 1 and Plan 9. Comparison of average through-
put of seven ciphers. Each cipher was timed while
en/decrypting a 256 MB contiguous block of random
data. Generally, Crypto++ shows a clear performance
advantage over libsec. The asymmetric RSA cipher is
expectedly much slower than its symmetric competi-
tors.

ciphers that provides the weakest security against
cryptanalytic attacks, it also distinguishes itself by
being the slowest of the symmetric ciphers (not in-
cluding the libsec’s AES in CTR-mode).

For the sake of throughput comparison, we have in-
cluded the RSA asymmetric cipher with a 2048-bit
key. The graph clearly demonstrates that the per-
formance of the asymmetric cipher is orders of mag-
nitude lower than the symmetric ones. Using an
asymmetric cipher to encrypt large blocks of data,
like we have done here, is neither the intended nor
the usual practice. RSA encryption is usually used
in conjunction with one of the symmetric ciphers.
However, it is useful to know the tipping point at
which it will be faster to use the combination of
symmetric and asymmetric encryption rather than
solely asymmetric encryption.

2.2.2 Intel AES Hardware Evaluation

In 2010, Intel introduced AES hardware exten-
sions to their line of CPUs codenamed “Westmere”.
The purpose of these extensions is to accelerate
execution of encryption and decryption using the
AES (Rijndael) cipher, as well as providing secu-
rity benefits over pure-software implementations.[6]
Our test setup includes one machine outfitted with
a Westmere-based CPU, and we use it in the Linux
2 and Linux 3 systems. We want to examine what

Proceedings of the 7th International Workshop on Plan 9

sort of benefits can be had from utilizing these ex-
tensions.

Table 2 shows a listing of the maximum theoreti-
cal throughput attainable per core on our Xeon®
X5650-based Linux 3 system.? As we can see in

Mode | Size | Operation | C/b | Throughput
128 Encrypt 4.15| 5.49 Gibit/s

Decrypt 1.30 | 17.54 Gibit/s

CBC Jrg | ety 565 4.03 Gibit/s
Decrypt 1.78 | 12.80 Gibit/s

Encrypt 1.88 | 12.12 Gibit/s

CTR 256 Decrypt 1.88 | 12.12 Gibit/s

Table 2: Theoretical AES performance. Maxi-
mum theoretical throughput for each of our chosen AES
ciphers when executed on Linux 3. The C/b column is
the processor’s reference Cycles/byte during hardware-
assisted AES operation. C/b and Throughput num-
bers are reported per-core of our Xeon® X5650-based
system.[6]

Table 2, our Linux 3 system has the potential to
deliver CBC-mode encryption speeds of more than
4 Gibit/s and decryption speeds of more than three
times that number.

It is often the case, however, that theoretical num-
ber and real-world performance are quite different,
and we want to investigate the throughput achieved
by current state-of-the-art implementations. To
this end, we compare the performance of two recent
versions of the Crypto+-+ library: Version 5.6.0,
which does not utilize the AES extensions, and ver-
sion 5.6.1, which does. Before testing, we have per-
formed a baseline analysis of the two versions on
our Intel® Xeon® E5630-based Linux 1 system,
which does not feature the AES hardware exten-
sions. The AES ciphers’ performance on the two
Crypto++ versions were as good as identical, and
any differences well within the margin of reporting
error. We thus assume that the only change af-
fecting performance in the AES algorithms between
version 5.6.0 and 5.6.1 of Crypto++ is the support
for hardware extensions.® Figure 3 clearly shows
the impact that hardware execution of the AES ci-
pher has on performance. Both 128-bit and 256-bit

2The Intel® Xeon® X5650 is a 2.67 GHz CPU with 6
cores. However, when the power- and temperature enve-
lope of the processors allows, it will increase frequency up
to 3.06 GHz, which is what we have based our calculations
on. Throughput per core under high load will this be lower

Bell Labs Ireland, November 14-16, 2012

Impact of AES Extensions on Encryption Throughput
Crypto++ 5.6.0 vs. 5.6.1 on Xeon X5650

T T T
16000 Linux 2 encrypt 1

L Linux 3 encrypt =—=
=l 14000 Linux 2 decrypt |
= 12000 Linux 3 decrypt -
£ 10000
3 8000
S 6000
=]
< 4000
=
= 2000 .
0 .
8, N A
/%5. O<?y %, 8
S5 [25
2, ®
s

Figure 3: Impact of AES Extensions on Encryp-
tion. Average throughput of seven ciphers with vs.
without hardware AES extensions. Benchmarks are
performed on a contiguous block of 256 MB of ran-
dom data. Intel’s newer CPU architectures provide a
sizable performance improvement to ciphers that can
take advantage of them. Particularly the AES cipher
in CTR-mode enjoys a massive performance boost.

CBC-mode ciphers show 3x to 3.5x throughput in-
crease, while the performance of 256-bit AES in
CTR-mode is increased by a massive 9x. As ex-
pected, there is no visible effect to any of the other
ciphers in the library.

When we compare the theoretical throughput num-
bers in Table 2 with our real-world experiments,
Crypto++ attains an impressive 94 percent of the
theoretical throughput on 256-bit AES encryp-
tion in CBC-mode (3.79 Gibit/s realized vs. 4.03
Gibit/s theoretical). Looking at the numbers for
our CTR~mode cipher, we see another near-perfect
score of 94 percent of the theoretical maximum
(11.45 Gibit/s realized vs. 12.12 Gibit/s theoret-
ical).

These numbers show that the Crypto++ library
is quite mature and well-implemented in terms of
throughput performance, and leaves little room for
improvement in the AES department.

2.2.3 Competing Hardware Encryption

2.2.4 Cipher Initialization

All of the symmetric ciphers we are studying here
require some initialization work to be done before

than the reported numbers.
3The Crypto++ 5.6.1 release notes state that the changes

to the AES functions from 5.6.0 is the addition of AES and
CLMUL support, as well as a number of bug fixes.|[2]

Proceedings of the 7th International Workshop on Plan 9

the actual encryption/decryption can take place.
This initialization step makes sure that the P-
boxes, S-boxes, subkeys, Initialization Vector, and
any other state information needed for the func-
tions of the cipher is present.

The real-world overhead this initialization incurs
is highly dependent on how a given piece of soft-
ware uses its ciphers, but it can be quite high if an
unsuitable cipher has been selected for a particular
workload. Figure 4 shows a comparison of symmet-

Cipher Initialization Performance
All test systems

10 T

e
,_.

Invokations/us

0.01

&N N %, % Y
¥ 2, D, .) X
Ay %, s, % A
' Q % 2,
% 8 % o8 3,
Cipher

Figure 4: Symmetric Cipher Initialization Per-
formance. Comparison of how fast cryptographic ci-
phers can be initialized and invoked on a 256 bit data
block across all four systems. Plan 9 generally compares
favourably with the Linux-based systems. Blowfish ini-
tialization is well over an order of magnitude slower
than the other symmetric ciphers.

ric cipher initialization performance across all our
test systems. Due to differences in how the two
cryptographic libraries initialize the ciphers, the
benchmark shows is a measurement of how many
times per microsecond each of them can instantiate
a new cipher and encrypt 256 bits of data. Results
are mixed, and the Plan 9 system takes wins in
both the AES CBC-mode ciphers and in particu-
lar the Triple-DES test (note the logarithmic y-axis
on the graph), even despite competing against a
faster CPU on Linux 2 and Linux 3. We clearly
see how the initialization process of the Blowfish
cipher is much more compute-intensive than any
of the other ciphers. This is by design[8], but is it
definitely an aspect worth taking into consideration
when selecting cryptographic ciphers for a partic-
ular application. It may worsen the performance
of the Blowfish cipher in applications requiring fre-
quent re-initializations.

Bell Labs Ireland, November 14-16, 2012

The availability of AES extensions impacts perfor-
mance only slightly. Generally, AES initialization
in Crypto++ 5.6.1 is faster than in 5.6.0 due to
the fact that the benchmark actually does perform
encryption on 256 bits of data.

2.3 Linux vs. Plan 9

When examining the performance of our two en-
cryption libraries in Section 2.2.1, Figure 2 showed
that there is quite a large difference in throughput
between the two. Particularly the AES family of
ciphers enjoyed a vastly superior performance un-
der Crypto++, and thus Linux, than under libsec,
which is Plan 9-based.

We are interested in investigating further into the
causes of this difference in order to provide a path
toward improving libsec and bringing it on par with
state-of-the-art implementations. To this end, we
will take a closer look at the constituent parts of
a cryptographic cipher and perform an evaluation
of how Linux 1 and Plan 9 compare to each other
in each of them. As before, we will mainly focus
on the AES cipher implementations in the two li-
braries, as we expect these to be the most wide used
ciphers. However, the basic operations are similar
in most of the symmetric ciphers, and conclusions
will thus likely benefit the implementation of all of
these in libsec.

2.3.1 Deconstructing AES

To gain more insight into the performance of the
AES implementations, we will briefly examine how
the cipher works in order to highlight which oper-
ations it will be beneficial to investigate.

Each round of the AES cipher consists of
four distinct steps: SubBytes(), ShiftRows(),
MixColumns ()%, and AddRoundKey().[5] We will
take a look at each of these to examine what the
underlying operations they perform are:

e SubBytes() simply substitutes each of the
bytes in the cipher’s state with a value from
AES’s precalculated S-box. The step thus per-
forms two memory access operations.

4The last round of the AES cipher does, in fact, not have
the MixColumns() step, but for the sake of simplicity, we
disregard that here.

Proceedings of the 7th International Workshop on Plan 9

e ShiftRows () transforms three of the four rows
in the cipher state by left-rolling them one,
two, or three words. Depending on the ar-
chitecture of the execution environment, the
exact number of instructions needed to per-
form this transformation varies, but they are
all simple bit-shift operations.

e MixColumns() diffuses the information state
by applying a finite-field polynomial transfor-
mation to each of its four columns. Each of
these transformations consists of two finite-
field multiplications and three XOR opera-
tions. The sum total is that this step performs
integer multiplications, integer divisions, XOR
operations, and some memory access for each
byte in the state.

e AddRoundKey () uses a precalculated key ex-
pansion table to lookup a subkey for the cur-
rent round. This subkey is then applied to
the state by XORing it with each of the state
columns. This step thus performs memory ac-
cess and bit-wise XOR.

Having taken a closer look at the constituent steps
of the AES cipher allows us to categorize the op-
erations needed into five categories: memory ac-
cess, integer multiplication, integer division, bit-
wise shift, and bit-wise XOR. These categories are
our vehicle to perform a closer profiling of our
Linux and Plan 9 operating environments to exam-
ine what causes the performance difference between
the two.

2.3.2 Detailed AES Benchmarks

For each of the AES operations we identified in Sec-
tion 2.3.1, we perform simple benchmarks designed
to stress only that particular operation. The bench-
marks are implemented in portable C, and are de-
signed to compile directly to assembly language on
the target platforms. We have taken care not to
invoke system calls or library routines of the op-
erating system. The purpose is to get a picture
of exactly what might be holding back the perfor-
mance of the AES ciphers on Plan 9, and thus we
essentially stress test the memory access through-
put and the efficiency of the compilers. As men-
tioned, the hardware on the two test platforms is
identical. Table 3 shows an overview of the exact

Bell Labs Ireland, November 14-16, 2012

System | OS version | Compiler
Plan 9 | 21-jan-2011 | 8c (4-jan-2011)
Linux 1 | Kernel 2.6.38 | gcc v. 4.6.1

Table 3: AES Benchmark Environment. For the
detailed AES benchmarks, we delve deeper into the
code behind the cipher. For reproducibility, we list the
versions of the tools used for our comparisons here.

operating environment we have used for the bench-
marks.

We have designed seven different micro benchmarks
to test our operations: NOP Loop is an empty for-
loop, Seq. m/a performs sequential memory ac-
cess by reading a block of memory from one end to
the other, Non-seq. m/a reads a memory block
from both ends toward the middle, Int. mult.
performs integer multiplication, Int. div. does
integer division, Bitshift performs bit-wise left-
shift operations, and finally, Bitwise XOR invokes
the XOR operator. All tests are performed on a
contiguous 32 MB memory segment, run 100 times,
and the results are averaged. Figure 5 shows the

Detailed Profiling
Linux 1 'gcc' vs. Plan 9 '8¢’

3000 T T T T

T
Linux 1 me—
Plan 9 =3

2500

2000

1500

Operations/ps

1000

500

T % T, % ., %, %,
.] , , ’
’o% %% %, A % 7 o,
%24 %
4
Benchmark
Figure 5: Detailed AES Benchmarks. Seven

micro-benchmarks have been performed on Linux 1 and
Plan 9. The benchmarks focus on compiler operation,
memory access, integer arithmetic, and bit-wise opera-
tions.

results of the benchmark operations, and it is ev-
ident that for the most part, the results between
the two systems are quite similar (as would be ex-
pected). Three operations stand out, however, giv-
ing Linux 1 an advantage: Non-seq. m/a, Int.
mult., and Int. div.. Notably, these are all mi-
cro benchmarks that include some form of arith-
metic to be done in every invocation of the loop

Proceedings of the 7th International Workshop on Plan 9

(Non-seq. m/a calculates an additional memory
offset compared to the other tests), while the tests
doing more direct manipulation of system memory
exhibit very similar scores on the two systems. In
other words, memory access does not seem to be
hindered by the Plan 9 system, but somehow arith-
metic operations seem slower than on Linux 1.

Arithmetic operations use CPU registers to store
and work on the operands of the operation. How
CPU registers are allocated and accessed dur-
ing program execution can be very compiler-
dependent, and in order to determine whether Plan
9’s 8c compiler uses a less efficient registerisation
strategy than Linux 1’s gcc compiler, we need to
perform another test. Both 8c and gcc will by de-

Detailed Profiling, w/o Compiler Optimization
Linux 'gcc -00' vs. Plan 9 '8c -N'

600

T
550 [Linux 1 ===
500 |- Plan9 =3 |
£ 450 =
& 400 =
S 350 | .
B 300t o
g 250 g .
O 200 | -
150 -
100 [~ DD o
50

/VO,o \%9 A’o,) 2 O 5’4:? y 65&[/)

o, " S %, % (e S
S 9/}) < "‘b,?

2%

©

Benchmark

Figure 6: Compiler Optimization Comparison.
By disabling compiler optimizations, we obtain much
more even results for the Linux 1- and Plan 9 systems
in our micro benchmark. Thus, the cause of Plan 9’s
performance deficit seems to lie with the 8c compiler’s
code optimizer.

fault perform some code optimization on the code
they generate, so in order to determine whether this
optimization is the cause of the performance differ-
ence, we repeat the micro benchmarks with code
where no optimization has been performed.

Figure 6 shows the non-optimized benchmarks, and
the difference to the default code is striking. The
systems are virtually on par, with Plan 9 lagging by
a few percent in most tests. These results clearly
lead to the conclusion that 8c’s optimizer is less ef-
ficient than gcc’s, and thus that much, if not all, of
the performance difference we saw in Sections 2.1
and 2.2.1 can likely be reclaimed by a more efficient
code optimizer in 8c.

Bell Labs Ireland, November 14-16, 2012

3 Conclusion

In this paper, we have investigated and bench-
marked the performance of a range of modern cryp-
tographic ciphers as implemented in two crypto-
graphic libraries: Crypto++ under Linux and lib-
sec under Plan9 from Bell Labs.

Our goal has been to provide a reference to what
the cryptographic performance of a state-of-the-art
library can be expected to be.

Our findings show Crypto++ to be a very mature
and high-performing library in terms of through-
put of its cryptographic functions. Especially
when paired with Intel’s AES hardware extensions,
Crypto++ was able to achieve double-digit giga-
bits per second of throughput, and scored around
95 percent of the maximum theoretical throughput
on our test hardware.

libsec, on the other hand, is not only a less feature-
rich library, it also leaves a wide performance gap
up to the competition in most benchmarks. Only
the process of initializing ciphers proved to be faster
with libsec than Crypto++, so clearly some work
needs to be done to bring the Plan 9 library up to
standard.

Support for Intel’s AES hardware extensions pro-
vides Crypto++ with a 4x to 9x performance in-
crease over its own software-only implementations,
so this seems to be where the low-hanging fruits
may be for libsec improvement, at least for the AES
ciphers.

Other improvements seem to available by improv-
ing the 8c compiler we used for out tests on Plan
9. Our in-depth analysis of the AES performance
seems to indicate that the optimizer in particular
is sub-par compared to its Linux counterpart.

References

[1] Ross Anderson and Eli Biham. Tiger: A fast
new hash function. In Fast Software Encryp-
tion, Third International Workshop Proceed-
ings, pages 89-97. Springer-Verlag, 1996.

[2] Wei Dai. Crypto++ library 5.6.1 - a free c++
class library of cryptographic schemes:. http:
//www . cryptopp.com, December 2011.

Niels Ferguson and Bruce Schneier. Practical
Cryptography. Wiley, 1st edition, March 2003.

Proceedings of the 7th International Workshop on Plan 9

36

[4] Niels Ferguson and Bruce Schueier. Practical
Cryptography. John Wiley & Sons, Inc., New
York, NY, USA, 1 edition, 2003.

FIPS. Advanced Encryption Standard (AES).
National Institute for Standards and Tech-
nology, Gaithersburg, MD 20899-8900, USA,
November 2001.

Shay Gueron. Intel advanced encryption stan-
dard (aes) instructions set (white paper). 2010.

M.J.B. Robshaw. On recent results for md2,
md4 and md5. RSA Laboratories’ Bulletin,
(4), nov 1996.

Bruce Schneier. Description of a new variable-
length key, 64-bit block cipher (blowfish). In
Ross Anderson, editor, Fast Software Encryp-
tion, volume 809 of Lecture Notes in Computer
Science, pages 191-204. Springer Berlin / Hei-
delberg, 1994. 10.1007/3-540-58108-1_24.

Bruce Schneier. Secrets and Lies: Digital Se-
curity in a Networked World. Wiley, 1 edition,
January 2004.

[10] Andrew S. Tanenbaum. Computer networks

(3rd ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

11] Xjaoyun Wang, Yiqun Yin, and Hongbo
Y g q g
Yu. Finding collisions in the full sha-
1. In Victor Shoup, editor, Advances in

Cryptology CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages
17-36. Springer Berlin / Heidelberg, 2005.
10.1007/11535218_2.

Bell Labs Ireland, November 14-16, 2012

A NIX Terminal

Erik Quanstrom
quanstro@quanstro.net

ABSTRACT

Starting just after the initial announcement of NIX in September, 2011[1],
a project was started to replace the Plan 9 32-bit port completely with a
64-bit port based on NIX. Replacing cpu servers was relatively easy;
most of the work was already done. Replacing terminals was quite a bit
more involved. There was more chore than innovation. But it required
enhancements to physical address mapping. Using the VESA interface
required a way to execute or emulate BIOS calls. In addition, many new
devices were added to support terminal hardware. A few subtile but sig-
nificant bugs were encountered. The result is a Plan 9 terminal kernel
that runs on real hardware and under VMWare Fusion.

Introduction

In September, 2011, NIX was announced on the 9 fans mailing list. By this time, many
of the accomidations for ancient PC hardware such as 8259 interrupts, the 8254 timer,
were weighing quite a bit on the 32-bit Intel kernel. The kernel also suffered from type
confusion; ulong was used for virtual addresses, physical addresses, 32-bit registers
and marshaled values. Padding appropriate for 32-bit machines was assumed. A large
number of ancient devices were being dragged around. There were a total of 99,524
lines of code in the pc directory. Unfortunately, some of this old code is useful for
embedded or old systems, so simply discarding it seemed unwise.

The approach taken was to try to duplicate all currently-used functionality in the 64-bit
kernel. The number of 32-bit systems is fading rapidly. It seems feasible to run on
only 64-bit hardware most of the time, so using 64-bits as an excuse to drop old code
seemed like a viable strategy.

The announced NIX kernel while suitable as a cpu kernel, was missing a number of
required features for terminals. Real mode emulation was missing, as were the proper
sort of virtual memory mappings. The VGA and draw infrastructure were missing, as
were support for usb and for terminal keyboards and mice. These have all been
addressed, and this paper was composed on two native NIX terminals. Additionally,
some work was put into the networking subsystem to allow booting of terminals under
VMWare Fusion.

Address Map and Virtual Mapping

Most video hardware handled by plan 9 works by mapping a physical frame buffer into
virtual address space. The frame buffer is mapped after the machine has been other-
wise fully initialized, and all cores have been started. Draw operations read and write

Proceedings of the 7th International Workshop on Plan 9 37 Bell Labs Ireland, November 14-16, 2012

from this frame buffer. To speed drawing, the caching subsystem is often instructed to
relax coherency or turning write-combining on for this buffer via (deprecated) MTRR
registers or page-table attributes (PAT).

At the start of this project, none of these requirements were met by the NIX kernel. Vir-
tual memory mapping via vmap could only be done on the boot processor early in
startup, and there was no way to modify the the cacheability of a memory range from
the default. The reason for both limitations was similar. There was no facility for
remembering the mapping. So the architectural requirement that all mappings of the
same physical range have the same cacheability could not be met. Likewise, faults on a
vmap’d range could not be resolved on other processors. Vmap works without tracking
early in boot because the boot processor’s (BSP) page tables are copied for each addi-
tional processor (AP).

To track memory cachability, it was decided to create new type of physical memory map
called adr(9nix). The map is low duty-cycle for entry manipulations, but high duty-
cycle for lookups so a simple insertion sorting scheme was used. Map entries consist of
a base, length address type (e.g. memory, mmio, etc.), current use and caching flags.
The memory type is a superset of ACPl memory types. In-use entries remain in the
table. A subset of the programming interface is detailed here.

#include "adr.h"

enum {
Anone,
Amemory,
Areserved,
Aacpireclaim,
Aacpinvs,
Aunusable,
Adisable,

Aapic,
Apcibar,
Ammio,
Alast

Ammio,
}s
enum {
Mfree,
Mktext,
Mkpage,
Mupage,
Mvmap,
Mlast = Mvmap,
}s
void adrmapinit(uintmem base, uintmem len, int type, int use)
void adrfree(uintmem base, uintmem len)
uintmem adrmemtype(uintmem pa, uintmem *len, int *type, int *use)

The map is initialized from the *e820 configuration variable. The kernel assumes that
this is populated by the bootloader, typically by calls to BIOS INT15 function E820. After
the kernel starts, ACPI, PCl and other memory-mapped facilities such as I/O APICs and
LAPICs add to this table. Address ranges may be allocated by address type; adr splits
address ranges as necessary. Allocated maps are indicated by a non- Mfree value of
When maps are freed, they are merged with adjacent maps of the same address type.
Sub-page allocations are allowed to deal with devices that map less than one page of
physical memory.

Proceedings of the 7th International Workshop on Plan 9 38 Bell Labs Ireland, November 14-16, 2012

Adrmapinit enters a new physical mapping which is required to be disjoint with all other
mappings. Adralloc allocates a map entry by subdividing an existing entry and chang-
ing its use and memory type. Only free entries may be allocated, thus preventing map-
ping of non-existent memory ranges, double maps, or inconsistent memory types.
Adrfree returns the physical range to free status. Cachability of an unmapped range of
memory may be changed on allocation since it is unused. Adrmemtype returns the page
table memory type flags, use and base address for a given virtual address. The flags are
stored in a form suitable for setting PAT flags for a 4KB page. The mmu code converts
to large-page flags when mapping large pages.

Vmap also requires that we be able to generate a consistent virtual address for a given
physical address. Since we have a full 64-bits of address space, we can simply map
each physical address to a virtual address that is offset by a suitable constant, KSEG2.
Now on initial vmap, adralloc can allocate the given range with a formulaic virtual
address on the local processor. (A new function vmappat can specify PAT caching flags;
it is used for mapping frame buffers.) Faults on other processors can be resolved by
calling adrmemtype to find a matching bit of allocated memory and return its memory
flags on a page fault.

This scheme works well. Adr is only 513 lines of code (less than 20% larger than its pre-
decessor). There is still only one table of physical addresses. It is never necessary to
store the virtual address since we chose the virtual address by formula. Lookups on
page faults are much faster than the page fault itself. The benefit of forcing all entries
to be entered before mapping, however, is up for debate. On the one had it does pre-
vent errors, and has caught inconsistencies between MP and ACPI tables in describing
APICs. But on the other hand, it is tedious and error prone. It remains because small
errors in memory mapping can be hard to track down.

VESA BIOS Calls.

To have a terminal, at least one hardware interface needs to be selected. “VESA” was
selected since most hardware will implement the VBE (VESA BIOS Extensions) inter-
face[2]. VBE uses 16-bit real mode calls to set up the frame buffer and provide other
services like screen blanking. The 386 kernel uses 176 lines of assembly to return to
real mode, make the VBE call, and return to 32-bit protected mode. A register-based
interface allows calls in from user space. A special file, /dev/realmode provides
access to bits of low memory required to run VBE calls.

To make direct BIOS calls from a 64-bit kernel would require all that code, in addition to
code to make the 64-to-32 bit and the 32-to-64 bit transitions. Emulation seemed
simpler. Fortunately, realemu(8) already provides emulation for VBE BIOS calls via the
same register-based interface[3]. So no transition to real mode was required. A
expanded version of /dev/realmode, /dev/resmem provides access to low, and
ACPI-reserved memory.

Since the kernel itself needs to blank the screen, it uses the context of the process set-
ting up video to maintain a channel to the BIOS emulator. These calls are initiated from
the clock interrupt, so it is not possible to make this call directly. The solution taken
was to use a kernel process reading a queue to call out to the VBE emulator. The cost is
that the emulator needs to remain running.

Unfortunately, the real mode calling interface does not work in 64-bit mode. It assumes
the same structure padding as the 32-bit Intel compiler, and little-ending encoding. A
proper solution to this problem has not yet been implemented, since it would require a

Proceedings of the 7th International Workshop on Plan 9 39 Bell Labs Ireland, November 14-16, 2012

rework of the 32-bit kernel, the emulator, and vga(8) as well. The problem has simply
been worked around with #pragma pack. It is worth noting that few calls are made
through this interface, so a textual interface would be sufficient. Alternatively, 16-bit
machine code could be passed in directly for emulation.

Porting Devdraw

There were two main challenges in porting the draw device and supporting libraries to
64-bits: the the dependence on the pool(2) allocator, which is not used by the 64-bit
kernel; and two relatively obscure but important bugs.

The draw libraries assume the pool memory allocator. This allocator provides for
optional memory compaction, to prevent a relatively small image memory from becom-
ing too fragmented to allow for the allocation of large images. Removing this depen-
dence required isolating the memory allocation in the memdraw library to a single file,
which still depends on the pool library. Then a replacement for the kernel was written
using the kernel standard allocator. It simply ignores compaction requests. Originally,
a compacting allocator was planned, as has been the tradition since the blit[4] but it
turns out that this optimization has not been necessary. No memory allocation failures
have yet been observed, and memory use seems reasonable.

Unlike the 386, x86-64 cpus have enough registers to sensibly consider using the
extern register construct again. This storage class is special. It does not have
any relationship to extern nor to register. It means that one register should be
allocated per processor for storing the given value. (That is, there will be one indepen-
dent value per cpu.) The kernel stores a pointer to the local virtual machine Mach *m
and the current process Proc *up using this storage class. The compiler allocates
these from “the top,” or R15, down, while regular register allocation starts with AX and
works up. As the compiler manual notes[5], one must make arrangements that all code
including libraries be compiled with the same external registers. For previous compilers
using this technique, 28 or more usable registers were available and failure to observe
this rule was harmless, since the kernel contains no code that has so many live regis-
ters. However, the drawing libraries can use all registers up through R15, which clob-
bered the external registers. The implemented solution was to prevent the compiler
from allocating regular registers higher than R13, since this is more practical than
recompiling all libraries for the kernel.

The second bug was with the following code in byteaddr.

uchar *a;

a = i->data->bdata+i->zero+sizeof(ulong)*p.y*i—->width;

When p.y was small and negative, and a was a normal kernel address (greater than
-256MB), a took on values just under 4GB. On careful examination, it was seen that
this is a consequence of the Plan 9 compilers being unsigned preserving. Suppose p.y
is -1 and the i—>width is 3. Then the third term will be Oxfffffff4. Since
sizeof(ulong) is itself aulong, the term is of type ulong. If we add this value to
a 32-bit pointer, sign doesn’t matter, since unsigned and signed addition are the same.
But when adding this value to a 64-bit pointer, we zero-extend and end up with a large
positive value. The solution to this bug is trivial, and obvious once found. Simply cast
the term to an int to enable sign-extension. It is likely that there are other, similar
bugs.

Proceedings of the 7th International Workshop on Plan 9 40 Bell Labs Ireland, November 14-16, 2012

Additional Devices

To equal the functionality of the 32-bit kernels a few additional devices were required:
support for more network cards, and usb. To a large extent, this was an exercise in
pipe fitting, and replacing ulong with a more descriptive type, usually u32int. How-
ever USB devices require 32-bit buffers, and network drivers (especially for 10gbe) can
consume more than the maximum 256MB of standard kernel heap. Since the kernel
heap has physical addresses less than 4GB (typical physical addresses start at 1MB), the
fact that USB has a 32-bit interface is not currently a problem.

The issues with networking are a little more interesting. Due to limitations of the
instruction set, it is difficult to run code out of a virtual address that is not either a
sigh-extended 32-bit value, or simply below 4GB. Since we traditionally place the ker-
nel at the top of memory, and traditionally place the heap above the stack, this limits
kernel memory to 256MB. However, there is no requirement about data, so it would be
possible to place the real kernel heap below the kernel text. The current kernel takes a
hybrid approach. The kernel heap remains where it is, but network Block*s are allo-
cated directly from physical memory. This means they are mapped below the kernel
text at KSEG2. While this is somewhat less than ideal—the rest of kernel memory is
quite constrained—network buffers may grow to fill most of memory. But it does show
the way to having an arbitrary amount of kernel heap. Due to 32-bit devices like USB,
however, exceeding 4GB of kernel heap may require careful memory tracking. And 4GB
may be a practical limit for the heap.

Conclusion

Currently the 64-bit NIX kernel runs on a variety of AMD, Intel and emulated hardware
as a terminal using VESA graphics through VBE calls. This kernel is fast, is able to use
all installable memory, and up to 255 cores, and provides broadly equal hardware sup-
port to the 32-bit kernels. It is a complete and full-featured replacement for the 32-bit
kernels, for hardware supporting 64-bits.

However, there are several areas worth attention in the near future. The scheduler
tends to suffer with more than 8 cores. And due to the use of 2MB pages for user seg-
ments, user processes use too much memory. Using a virtual page size of 64KB, and
abutting segments with increasing page sizes are under investigation.

Abbreviated References

[T]IR. Minnich, http://9fans.net/archive/2011/09/145

[2]VESA, VESA BIOS Extension (VBE), version 3.0, September 16, 1998.

[3]G. Friedemann (cinap_lenrek), realemu, http://9fans.net/archive/2011/03/5
[4]R. Pike, L. Guibas, and D. Ingalls, SIGGRAPH’84 Course Notes, May 21, 1984.

[5]R. Pike How to Use the Plan 9 C Compiler, /sys/doc/comp.ps

Proceedings of the 7th International Workshop on Plan 9 41 Bell Labs Ireland, November 14-16, 2012

Access Control for the Pepys Internet-wide
File-System

Tommaso Cucinotta, Nilo Redini
Bell Laboratories, Alcatel-Lucent Ireland

Gianluca Dini
University of Pisa, Italy

October 31, 2012

Abstract

This paper describes the Access Control Model realized for the novel
Pepys distributed, Internet-wide, file-system. The model design has been
widely inspired to various existing standards and best practices about
access control and security in file-system access, but it also echoes peculiar
basic principles characterizing the design of Pepys, as well as the IIP
protocol, over which Pepys itself relies. The paper also provides technical
details about how the model has been realized on a Linux port of Pepys.

1 Introduction on Pepys

Pepys is an innovative distributed file-system born to meet the increasingly
growing demand, from users, to always have their data available anywhere.

Pepys is composed of a multitude of servers that, together, present a col-
lection of files organized in trees or volumes. It uses a hierarchy of caching file
servers and a set of archival storage servers, brought together through a com-
mon set of protocols for data access and control. Moreover, in order to design a
fault-tolerant system, files may be replicated among servers; doing so it is even
possible to improve the speed of files fetching.

In Pepys, when a new file is created, it is not necessary that every directory
present into the path is present. For example, the file named /a/b/f can exist
in the file-system without requiring existence of /a/b and/or /a. In the Pepys
design, the traditional distinction among files and folders is replaced by the
ideas that a collection of files (called objects) reside in the file-system. The
existing object having a name with the longest prefix matching the name of
another object merely becomes the guard of said other object. For example, if
/a and /a/b/f exist and /a/b not, then /a is the guard of /a/b/f. The guard
relationship among objects ultimately regulates how exactly access control is
performed, within the Pepys file-system, as it will be detailed in Section 3.

Proceedings of the 7th International Workshop on Plan 9 42 Bell Labs Ireland, November 14-16, 2012

Tp Ram

p Server

Pepys
mp

P \ mip Client

Osprey p-kernel

Figure 1.1: Pepys components.

Pepys is a versioned file-system, i.e., when a file is modified, a new version of
the file is added to the system, that keeps storing all the previous versions. This
way it is always possible to keep track of the files history. Versioning allows for
an efficient caching of files.

Moreover, files in Pepys may have attributes. These are defined in the same
name space as for the regular files. For example, if owner is a valid attribute for
the file /a/b/f, then its complete name is /a/b/f/owner. To avoid confusion
between files and attributes, a special character is used in the file operations
when referring to attributes.

Furthermore, Pepys uses a new transport protocol (called TIP) in order to
minimize the round-trip message exchanges, between a client and a server, nec-
essary to perform file transfer operations. The protocol allows to send, to the
server, multiple consecutive requests in a single packet.

Being still under heavy development, Pepys has various features still under
implementation, or merely at a design stage. For example, Pepys was not in-
cluding any mechanism for access control, yet. This document describes the
work that has been done in order to add an Access-Control Model to the Pepys
distributed file-system, complying with the general principles behind the Pepys
design.

Pepys file-system is currently implemented on top of a new operating sys-
tem called Osprey [9] (see Figure 1.1), providing an alternative approach to
cloud computing, and specifically aiming to improve latency and predictability
of cloud applications and support for mobility. A key component in the over-
all architecture is the IIP protocol, supporting all Pepys operations, including
various interactions with the Osprey kernel itself.

As shown in Figure 1.1, the original Pepys server we modified included 1P
Ram, basically an in-RAM file-system. As explained in 4.1, this has been ex-
tended to keep files on a Linux (and generally POSIX) file-system, and to sup-
port our new AC model.

Proceedings of the 7th International Workshop on Plan 9 43 Bell Labs Ireland, November 14-16, 2012

1.1 Paper Organization

The reminder of this paper is organized as follows. In Section 2, we put our work
in relationship with related existing works in the literature. In Section 3, we
present the Access-Control Model (ACM) we designed for Pepys, highlighting
the most important design choices. Section 4 provides some implementation and
further architectural details. Finally, in Section 5 we describe possible future
work we plan to do on the topic.

2 Related Work

In order to design an efficient and state-of-the-art access control model, some
of the most widely known and deployed standards for file-system access control
have been considered, and specifically:

e Unix File-System permissions [11] and Linux extensions [13]
e New Technology File-System (NTFS) permissions [12]

e POSIX Access Control Lists (ACLs) [1, 5]

e Role-Based Access Control (RBAC) [10]

e Discretionary Access Control (DAC) [7]

e Mandatory Access Control (MAC) [7]

e HTTP authentication mechanism [4]

Our work was greatly inspired to the POSIX Access Control Lists (ACLs) [1, 5].
POSIX ACLs overcome some of the limitations of the old UNIX file-system [11],
allowing for the definition of multiple per-user and per-group rules, providing a
great liberty of flexibility in expressing access-control rules. The access-control
model proposed in this paper is also based on attaching lists of access-control
rules to files, therefore our model is also referred to as an ACL model, even
though there are various differences with the standard POSIX ACL (see Sec-
tion 3 for details).

In order to represent the set of allowed permissions for users or user groups,
the classical concept of a bit-mask has been used, similarly to the UNIX file-
system [11]. However, the set of allowed permission bits does not match perfectly
UNIX. For example, we do not support the right of execution for files (that would
not have sense in a distributed system); also, taking inspiration from NTF'S [12],
the co-owner bit has been added, used in ACL entries to define which users are
co-owners of the file, i.e., they can manage its ACL settings.

Also, in our model the concepts of users and groups are somewhat unified,
being also possible to define arbitrary nesting levels among groups of users. This
behavior can be thought of as a flexible way to define users’ roles and their hi-
erarchical or nesting relationships, hence can be compared to the expressiveness
often found in RBAC [10] models.

Proceedings of the 7th International Workshop on Plan 9 44 Bell Labs Ireland, November 14-16, 2012

Our model design allows users to manage their own files permissions, allowing
for a completely discretionary access-control, as found in DAC [7] models. At the
same time, it is provided the possibility, for a system administrator (or specific
set of privileges users), to define “upper-bound” rules that cannot be overcome
by regular users, stealing some of the characteristics of typical MAC [7] models,
and taking inspiration from similar characteristic available in in NTFS.

Our implementation did not address comprehensively authentication, yet.
However, a basic authentication mechanism has been realized, taking inspira-
tion from HTTP-Auth [4], used in the HTTP protocol, in which clients send
their hashed password to authenticate to the server. The authentication mech-
anism also re-uses the “everything is a file” old paradigm of UNIX and further
developed in the Plan9 OS [3]. Furthermore, we support a primitive mechanism
for delegation [6] of authority through off-line delegation certificates resembling
Amoeba capability lists [8, 2].

Various other access-control models for file-systems have been proposed in
the literature, such as the WebOS [14] work, including a mechanism allowing
entities to delegate other entities in order to act on their behalf on a set of
defined file-system objects, or others. A comprehensive list of such works is out
of the scope of the present paper.

3 Access Control in Pepys

One of the basic concepts behind the Pepys access-control model design is the
one to create an environment in which:

e the traditional distinction between users and groups is replaced by a uni-
fied vision of such entities;

e AC rules can be specified at a generic abstraction level, considering sets of
files and sets of users, then refined for specific subsets of those files and/or
users;

e cach user is free to define the access control rules for its own objects, in
the most flexible way possible;

e however, each user freedom is constrained by the rules dictated by system
administrators, if any;

e re-using the “everything is a file” approach to manage as many opera-
tions as possible, including operations involving the administration of the
access-control operations, such as editing of ACL rules or creation of users.

More details on the specific aspects are reported below.

3.1 Entities

The difference between users and groups has been overcome by introducing the
concept of entities, representing users or groups of users, that can be authorized
or denied the access to portions of the file-system.

Proceedings of the 7th International Workshop on Plan 9 45 Bell Labs Ireland, November 14-16, 2012

In order to make the system security administration as scalable as possible,
entities (i.e., users and groups) can belong to others entities; if needed, a system
can be configured in such a way that a nesting relationship becomes valid when
both involved entities agree about it. An entity has to be aware of the fact that,
adding another entity in the set of entities belonging to it, is equivalent to giving
them all the access rights to which it is entitled, unless otherwise overriden by
more specific rules.

There are no limitations for the nesting level of the belong-to relationship,
which is to be considered a transitive relationship. Hence, a “belong-to” rela-
tionship between two entities can be:

1. Direct
2. Indirect (if transitively inherited).

The first kind of relationship is considered stronger than the second one, from an
access-control (AC) perspective, meaning that an AC rule referring to a direct
father of a user has priority over an AC rule referring to a generic ancestor.
The direct and indirect ancestors of an entity can be visualized in a “belong-to”
relationship priority tree in which the entity under consideration is the root of
the tree (see Figure 3.1).

Moreover, as we will see, an entity authentication is not mandatory: an
entity can decide whether or not to authenticate itself into the system.

Two system-level entities are always defined in the system, called others
and nobody. Each entity defined in the system belongs implicitly to others,
but only in the weakest possible sense (see Section 3.2.1). The others entity
is a convenient way, in ACL rules, to refer to any authenticated user in the
system. Also, unauthenticated entities, as well as entities just logged onto the
system, and about to authenticate, are treated by the system as implicitly being
the nobody entity. The nobody entity may be conveniently used in AC rules to
refer to any unauthenticated user. Also, is the system implicitly considers that
others belongs to nobody, as shown in Figure 3.1. The purpose of these two
entities is further detailed in Section 3.3.

Finally, since nesting relationships can be arbitrarily added by users, loops
are possible in the belong-to tree. Such a situation, albeit unusual, is still
handled by the implementation consistently.

3.2 Access Control Model

Each object in the file-system owns an ACL table which contains the access
rules governing access to it; each rule names an entity and its permissions to
the object.

Each ACL can have one or more co-owners, which can manage the rules in
the ACL. At least one co-owner has to be always present, so to ensure that there
is always someone able to manage the object security settings. Therefore, the
system forbids the operation of deleting the ACL rule for the last co-owner.

Proceedings of the 7th International Workshop on Plan 9 46 Bell Labs Ireland, November 14-16, 2012

Auth. entity

First ancestor

/ e B Others\\\ %2 y B) level
, E, . T
[< \ e (g) Second ancestor
/ 4/ 5/ level
E2 E'\ | E3 .
[\ J .
\ Ea / e L N
RN / (_ Others) Second-last ancestor
~_ / -'r level
' i Nobody : Last ancestors
— level (unauth.)

Figure 3.1: Belong-to relationship tree, rooted at a generic entity Ei.

ACL rules apply generally to the object they are attached to, but are implic-
itly and dynamically inherited also by all the objects having it as a guard (i.e.,
the children file), and any other further object down the containment/guard
hierarchy of objects (i.e., the whole subtree rooted at the object). Normally, a
rule attached directly to an object takes precedence over a rule attached to its
guard (father), or a rule attached to its guard’s guard, etc. However, there is a
special type of rules, called non-overridable rules (o-rules), that forcibly apply
to the the whole subtree of the guarded files and cannot be overcome. Such
rules are designed to be used typically by system administrators to restrict the
AC settings that regular users may be willing to configure for their own created
contents.

As a result, a rule in an object (both a regular rule or an o-rule) stating that
an entity has certain permissions is effective only if there are not any o-rules, in
its guards chain or in the object itself, stating otherwise.

An ACL rule mentioning the others entity can be used to grant or deny
access to any user known to the system, when acting as an authenticated user.
Also, An ACL rule mentioning the nobody entity can be used instead to grant
access to any user connected to the system, but not having authenticated (yet).
However, authentication is only partially addressed in Pepys (e.g., server authen-
tication is unaddressed, so far), as a full mechanism will have to be integrated
with cryptography at the IIP protocol level.

The type of supported permissions in the current design and implementation
is inspired to traditional UNIX file-systems: read and write of files, traversability
of guards, ACL management (co-ownership). However, this tentative set of
permissions can easily be extended to more complex permissions or permission
set (e.g., adding a delete permission or others, as found on NTFS file-systems).
It is noteworthy to mention that, whilst on traditional file-systems, the read
permission over a folder refers to the ability to read the folder contents, in
Pepys it is planned to provide distinct permissions to read a guard’s children (the
guarded/contained objects), and to read any files contained in the corresponding

Proceedings of the 7th International Workshop on Plan 9 47 Bell Labs Ireland, November 14-16, 2012

sub-tree. Another feature that is being discussed, from the ACM perspective,
is the one in which there are multiple guards for the same object, a situation
resembling the concept of link in traditional UNIX file-systems.

3.2.1 Decision Algorithm

At the core of the Pepys ACM there is the algorithm deciding whether or not to
grant a given user access to a given file for a given operation. The central idea
for such algorithm is: “more specific rules take precedence over more generic
ones”. This means that, if the entity can reach an object, AC rules directly
attached to it have priority over AC rules inherited by guard objects or other
ancestors (the o-rules described above are the only exception, when present).

The decision algorithm locating the proper permissions applying to a given
entity for a given operation (e.g., write) on a given object, can be expressed
shortly in these few steps:

1. Traversability check: the system checks that the entity has the right to
traverse (e.g., 'x’ permission bit) all the existing guards going from the
file-system root down to the desired object, looking at those guards ACL
tables; the traversability permission, in such tables, can either be granted
directly to the entity attempting the access, or indirectly through any of
the entity parents or ancestors, in the belong-to relationship;

2. Check if there is a rule for the entity in the object ACL;

(a) if there is a match, its permissions mask are used to determine the
access;

3. Check if there is a rule for any ancestor of the entity (i.e., as due to the
belong-to specified relationships), giving priority to rules naming direct
ancestors, then 2nd level ancestors, etc.;

(a) as soon as a match is found, its permissions mask are used to deter-
mines the access;

4. Get the inherited rules from the object guard and start again the algorithm
from step 2;

5. If there are no rules about the entity or for one of its ancestors the access
is denied.

It is important to say that the o-rules affecting a given entity are combined with
the permissions mask returned by the algorithm above; this operation gives us
the effective permissions which the entity owns on the object.

Moreover, as we can see, it is been decided to give the priority to the entity
ancestors, named in the specific object, rather than a possible rule for the ap-
plicant entity in the object guard; this because we consider more accurate the
rules contained in the specific object rather than those in its guard.

Proceedings of the 7th International Workshop on Plan 9 48 Bell Labs Ireland, November 14-16, 2012

Furthermore, since every entity belong to nobody entity, if the nobody ACL
rule is present, it allows to inhibit inheritance of guards rules; since the algorithm
would break at step 3. Same reasoning can be made for others applies to every
authenticated entity.

This makes the algorithm very flexible since is possible decide when the
decisional process has to stop.

3.2.2 Delegation

Entities can delegate others entities to act in their behalf, on a given object.
Each delegation is associated with a specific object and contains: the name
of the delegator, the name of the delegee, a set of permissions assigned to the
delegee and an expiration date. Clearly, the permissions granted by delegation
cannot be higher than the ones held by the delegator on the object.
Two kinds of delegation are possible:

1. On-line.
2. Off-line.

In the first one the delegator issues the delegation to the system, merely specify-
ing in it who is the delegee, its permissions and the file-system object on which
the delegation is applied. In the second method the delegator issues a signed
delegation to the delegee which, when it wants to perform an action on behalf
of the delegator, will present it to the system.

In the first case the signature is not required, since the system knows who is
the delegator and its permissions (for the anonymous cases see below); instead
in the second case the system, before approve the delegation, has to know who
is the issuer; hence the delegation has to be signed by the delegator.

The delegations are taken in account using the same algorithm described
above, and only if the access is denied using the regular ACL rules.

3.3 Authentication

Authentication of users has been temporarily realized as a simple (hashed) pass-
word verification. Authentication is not mandatory, to connect to the server.
An entity can have access to the system without having authenticated itself. In
this case, the system considers the connected entity as being the nobody entity,
thus the access-control permission specified for such entity throughout the file-
system apply. While being connected to the system, an entity can authenticate
itself whenever needed, upgrading its session from the rights corresponding to
the only nobody entity to the rights associated with its actual name.

One of the goals of the Pepys file-system is to become a content-distribution
platform. Supporting an unauthenticated state of the session is useful, in such
context, to realize a sort of “incognito” mode of access by which public contents
can be distributed worldwide without requiring users to reveal their identities.

Proceedings of the 7th International Workshop on Plan 9 49 Bell Labs Ireland, November 14-16, 2012

/ mp Ram
/ mp Server
I mp Disk
Pepys
mp
Lib Posi
ib Posix \ Tp Client
Unix Kernel

Figure 4.1: Porting on Linux implementation.

Hence is clear that the system must be able to treat in a different way the
authenticated entities from the other ones; this is achieved by using the couple
others and nobody. Indeed others refers to entities which are logged into the
system, instead nobody to every entity present in the system (including both
authenticated and not).

To understand better how these two entities are used, consider an ACL table.
An ACL entry referring to the others entity applies to “every user logged and
authenticated into the system but for which no other ACL entries have been
found in the ACL table”; an ACL entry referring to the nobody entity, instead,
applies to “every user logged onto the system, either authenticated or not”. ACL
entries for others have priority over the ones for nobody, i.e., the AC engine
behaves as if the former entity were a subgroup of the latter one (see Figure 3.1).

Finally, if a server needs to authenticate users before allowing access to its
contents, this can always be done by specifying the permissions wanted for the
authenticated entities following the rules above (and using others if needed)
and no access rights for the nobody entity.

4 Implementation Notes

4.1 Porting on Linux

The first step in our work was to unplug the Pepys file-system from its original
structure (shown in figure 1.1) and therefore build a layer, called Lib Posiz, in
order to make the Pepys file-system runnable on UNIX machines.

In order to allow operations of swapping/loading objects from/into RAM, a
new component has been added to the Pepys server, called Pipdiskfs (since the
original structure provided only a RAM file-system).

Our porting relies on FIFO queues, provided by UNIX file-systems, in order
to exchange ITP messages between the server and the clients (however, we plan
to switch to UDP-based communications).

The implementation is shown in Figure 4.1.

Proceedings of the 7th International Workshop on Plan 9 50 Bell Labs Ireland, November 14-16, 2012

root

™ entities
E1
™ lbelto
™ Beltome
™ Approved
™ Proxies
> efiles

™ homes

E

1

Figure 4.2: File-System structure.

The developed software included, in addition to the Pepys server, a few other
tools:

1. Administration tool allowing for initializing the file-system, specifying:
(a) Entities allowed and their login password.

(b) Server name.

(¢) Mount point (on the underlying Linux file-system) to allow for swap-
ping/loading of objects from/into the RAM.

(d) Path of directory that will contain temporary files (i.e., named FIFOs
currently used for client/server communications).

2. An interactive terminal in which is possible interact with the Pepys file-
system (create files, administer ACL settings).

3. A set of “ad-hoc tests” to test the main file-system features.

4.2 File-System Structure

Inside the file-system the entities are represented by special guards, which own

a set of special files. Moreover, as we can see in Figure 4.2, each entity is

associated with a home object (folder) over which it has full control.
Particularly each entity object guards (i.e., contains):

Ibelto/Beltome: necessary to establish a new relationship.

10

Proceedings of the 7th International Workshop on Plan 9 51 Bell Labs Ireland, November 14-16, 2012

Approved: list of entities which the named one belongs to
Proxies: provides a mechanism for permissions delegations.
e-files: others entity files as, for example, entity public key.

Each entity guard is managed by the guard above called /entities, which holds
also a special file called Login in order to allow entities authentication.

An ACL table is represented by an object attribute, which can be changed
only by the co-owners as reported in such ACL.

Instead an object delegation is a special object attribute, managed by the
system, and hidden from the user’s point of view.

The motivations behind this implementation is discussed in Section 4.4.

4.3 Entities relationship

When an entity wants to become member of another entity’s users group, it
writes the name of the other entity in its Ibelto file (over which it normally
has write permission). The other entity (or the system administrator), on its
own, has to write the name of the first entity in its Beltome file, in order for
the new relationship to become effective. For each entity, the effective Ibelto
relationships are reported in the approved special object within the entity folder,
normally accessible to it for reading.

It is impossible for an entity to remove from its parents the system entities
nobody and others. Also, depending on how the system is being administered,
it is possible to allow users to write to their own Ibelto file, enabling them to
propose changes to their belong-to relationship, including their removal from
groups they belong to. On the other hand, it is equally possible to forbid such
write operations, leaving the administration of users and groups entirely to
system administrators, as it commonly happens in nowadays operating systems.

4.4 Delegation

As we said, two kinds of delegation are possible. In the on-line case, when
an entity wants to delegate other entities it has to write the delegation in its
proxies file. Specifically it has to indicate who is the delegee, its permission,
an expiration date and the object to which the delegator is referring to. After
that, the system will consider the delegation as effective only if it is compliant
with the delegator’s permissions on the specified object (i.e., an entity cannot
delegate permissions it does not possess over a file-system object).

In the off-line delegation method, the delegee must specify in its proxies
file who is the delegator and a valid path where the signed delegation is stored.
The system then checks the delegation signature using the public delegation
key available in the entity folder, and, only if the verification succeeds, is the
delegation considered effective.

A valid delegation acts like a temporary ACL entry. However, the delegee
might not have permissions to administer an object ACL, still be willing to

11

Proceedings of the 7th International Workshop on Plan 9 52 Bell Labs Ireland, November 14-16, 2012

delegate some other entity to perform actions on its behalf on that object. The
proposed model allows for this kind of scenarios, merely allowing to each entity
to solely write/read its own proxies files. As a consequence, the system will
make the requested delegations effective, or ignore them, if they are invalid.

4.5 Authentication

When a client logs onto a Pepys server, it is not required to authenticate im-
mediately, resulting in a session being in an unauthenticated state. This means
that the nobody access rights apply for the client, whenever an operation on the
file-system is attempted. The client can authenticate itself at any time by using
the special file Login. Specifically, when an entity wants to upgrade its session,
it has to write its (SHA-256) hashed password using a write command. The
server compares the hashed password with the one stored in the entity pass-
word file, and, if they match, the entity session is upgraded to an authenticated
state. From now on, the actual name of the entity is used for checking the access
rights of the user.

Note that the Login file is a special file, in that it does not really store
any password. Such file can be opened by multiple remote clients concurrently
without problems, as in the implementation the authentication material being
provided by each client is kept into a separate buffer associated with each session.

Note that, thanks to the characteristics of the ITP protocol to group multiple
requests in the same message, it is possible for a remote client to stuff, within a
single round-trip interaction with a Pepys server, the set-up of a session, opening
of the Login file and writing of the password, opening of the target file-system
file and issue of the desired read or write operation. However, the very simple
authentication protocol realized so far is also relatively weak, in that it is easily
subject to replay attacks, thus it can be improved by adding a time-stamp to the
hashed password to be written into the Login file, or a server-provided random
number (i.e., a nonce). Though, the last mechanism would require at least two
round-trips with the server.

Finally, we plan to review and improve the authentication mechanism by
integrating it with cryptographic extensions of the IIP protocol which are being
designed at the time of writing, that will allow for having encrypted client-server
interactions.

5 Conclusions and Future Work

In this paper, an access-control model for the Pepys Internet-wide distributed
file-system has been proposed, highlighting the main characteristics of its design.
The proposed model takes into account the basic principles behind the well-
known POSIX ACL standard and other widely used file-systems, enriching the
model with characteristics that are inspired to the general principles of the
Pepys distributed file-system.

12

Proceedings of the 7th International Workshop on Plan 9 53 Bell Labs Ireland, November 14-16, 2012

The paper provided also a few notes on how the model has been implemented
in a Linux port of the Pepys current code base.

Possible future work on the topic include: complete the implementation (un-
der way) of digitally signed delegations; extend the delegations features includ-
ing control of the delegation chain depth; integration of Pepys and particularly
of the current authentication mechanism with properly designed cryptographic
extensions to the IIP protocol; evaluate the performance of the current ACM
features, and possibly optimize the most recurrently used code paths.

References

[1] IEEE Std 1003.1-2001, Open Group Technical Standard—-Standard for In-
formation Technology—Portable Operating System Interface (POSIX), 2001.

[2] Goerge Coulouris, Jean Dollimore, and Tim Kindberg, editors. Distributed
Systems: Concepts and Design, chapter Amoeba. Addison-Wesley, 1994.

[3] Russ Cox, Eric Grosse, Rob Pike, David L. Presotto, and Sean Quinlan.
Security in plan 9. In Proceedings of the 11th USENIX Security Symposium,
pages 3-16, Berkeley, CA, USA, 2002. USENIX Association.

[4] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luoto-
nen, and L. Stewart. Http authentication: Basic and digest access authen-
tication. RFC 2617, jul 1999.

[5] Andreas Griinbacher. Posix access control list on linux. In Proceedings of
the USENIX Annual Technical Conference, June 2003.

[6] Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. ACM Trans.
Comput. Syst., 10(4):265-310, November 1992.

[7] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J.
Turner, and J. F. Farrell. The inevitability of failure: The flawed assump-
tion of security in modern computing environments. In Proceedings of the
21st National Information Systems Security Conference, pages 303-314,
Crystal City, Virginia, 1998.

[8] Sape J. Mullender and Andrew S. Tanenbaum. Protection and resource
control in distributed operating systems. Computer Networks, 8(5-6):421—
432, 1984.

[9] J. Sacha, J. Napper, S. Mullender, and J. McKie. Osprey: Operating
system for predictable clouds. In Proceedings of Dependable Systems and
Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Con-
ference on, pages 1 —6, june 2012.

13

Proceedings of the 7th International Workshop on Plan 9 54 Bell Labs Ireland, November 14-16, 2012

[10] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The nist model for role-
based access control: towards a unified standard. In Proceedings of the fifth
ACM workshop on Role-based access control, RBAC 00, pages 47-63, New
York, NY, USA, 2000. ACM.

[11] Guido Socher. File access permissions. 2000.

[12] William R. Stanek. File and folder permissions. In Microsoft Windows
2000 Administrator’s Pocket Consultant, page Chapter 13, 2002.

[13] Stephen Tweedie. Ext3, journaling filesystem, 2000.

[14] A. Vahdat, T. Anderson, M. Dahlin, E. Belani, D. Culler, P. Eastham, and
C. Yoshikawa. Webos: operating system services for wide area applica-
tions. In Proocedings of High Performance Distributed Computing, 1998.
The Seventh International Symposium on, pages 52 —63, jul 1998.

14

Proceedings of the 7th International Workshop on Plan 9 55 Bell Labs Ireland, November 14-16, 2012

Atomic increments

Enrique Soriano—Salvador
Laboratorio de Sistemas
Universidad Rey Juan Carlos

esoriano@lsub.org

Gorka Guardiola Muzquiz
Laboratorio de Sistemas
Universidad Rey Juan Carlos
paurea@lsub.org

11/8/2012

ABSTRACT

Following a discussion in the NIX mailing list, we have measured the cost
of different implementations of atomic increment using a pbenchmark.
These implementations are (i) the standard assembler routine using a
hardware protected addition instruction; (ii) a lock-free assembler routine
using compare-and-exchange; and (iii) a spin lock protected counter. In
this paper we present the implementations, the results of running a
pbenchmark against them and our conclusions about which one we
should keep. Quite surprisingly, spin locks are better than the other
implementations for a high contention scenario in a 32 cores multipro-
cessor.

Introduction

While implementing various synchronization mechanisms in NIX [2], we started a discus-
sion about the cost of different atomic operations. In particular, one of the simplest
operations we can imagine is incrementing or decrementing an atomic integer (ainc).
Several mechanisms have been implemented in the C library and in the kernel while try-
ing to optimize this operations. Specifically, we found two assembler implementations
of ainc and a C implementation using spin locks [1].

Ainc implementations

The first assembly routine we found uses a hardware protected addition instruction
(Intel’s LOCK prefix). As the AMD64 manual states [3]:

The LOCK prefix causes certain kinds of memory read-modify-write instruc-
tions to occur atomically. The mechanism for doing so is implementation-
dependent (for example, the mechanism may involve bus signaling or packet
messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multipro-
cessor system.

Proceedings of the 7th International Workshop on Plan 9 56 Bell Labs Ireland, November 14-16, 2012

The routine for AMD64 is:
TEXT lainc(SB), 1, $-4

MOVL $1, AX

LOCK; XADDL AX, (RARG)
ADDL $1, AX

RET

The routine for 386 is:
TEXT lainc(SB), $0

MOVL 1+0(FP), AX
LOCK; INCL 0(AX)
RET

The version of ainc we show next is also an assembly routine, but it is subtler. This
implementation is lock free [4]. It copies the value of the counter, updates it and tries to
put it back into the counter with compare-and-exchange. If the value of the counter
changed in the window, the attempt fails, and the operation is retried.

The routine for AMD64 is:
TEXT 1fainc(SB), 1, $0

/7‘: exp :‘:/

/-,‘: new 7‘:/

ainclp:
MOVL (RARG), AX
MOVL AX, BX
INCL BX
LOCK; CMPXCHGL BX, (RARG)
JINZ ainclp
MOVL BX, AX
RET

The routine for 386 is:

TEXT 1fainc(SB), $0 /* int ainc(int *);
MOVL addr+0(FP), BX
ainclp:
MOVL (BX), AX
MOVL AX, CX
INCL CX
LOCK
BYTE $0x0F; BYTE $0xB1l; BYTE $0x0B
IJNZ ainclp
MOVL CX, AX
RET

/* CMPXCHGL CX, (BX) */

The third version uses the standard Plan 9’s C library spin lock implemented with test-
and-set (which is just the XCHGL instruction which acts as if having and implicit lock

prefix) and back off:

Proceedings of the 7th International Workshop on Plan 9 57

Bell Labs Ireland, November 14-16, 2012

void
lock(Lock *1k)

{ . .

int i;

/* once fast */

if(!_tas(&lk—>val))
return;

/* a thousand times pretty fast */

for(i=0; i<1000; i++){
if(!_tas(&lk->val))

return;

sleep(0);

¥

/* now nice and slow */

for(i=0; i<1000; i++){
if(!_tas(&lk->val))

return;

sleep(100);

¥

/* take your time */

while(_tas(&lk—>val))
sleep(1000);

¥

Test-and-set for AMD64 is:

MOVL $0xdeaddead, AX
XCHGL AX, (RARG)
RET

Test-and-set for 386 is mostly the same:
TEXT _tas(SB), $0

MOVL $0xdeaddead, AX
MOVL 1+0(FP),BX
XCHGL AX, (BX)

RET

Finally, this version of the atomic increment is:

lock(&l);
counter++;
unlock(&l);

Clearly, having three different implementations for such a simple operation is an over-
kill. The question is which one should we keep. We have measured them in various sce-
narios to try to answer to this question.

Methodology

The machine(s) in which we took the measurements are a 32-core AMD K10 Opteron
6128 running NIX and a 2594MHz Pentium IV running Plan 9. For the AMD multipro-
cessor, we have taken measurements using 1 and 32 cores. NIX uses an AMP scheduler
when running on multiple processors, and a SMP scheduler for one processor. We mea-
sured the cost for the three implementations of ainc showed in the previous section.

Proceedings of the 7th International Workshop on Plan 9 58 Bell Labs Ireland, November 14-16, 2012

In AMD64 (only for the implementation based on the LOCK prefix) we have taken the
measurements for 64 byte aligned values and unaligned (i.e. 32 byte aligned) values.

The upbenchmark measures the time taken to increment the value with different levels
of contention. The program spawns a number of processes that try to increment the
counter in a closed loop. The contention depends on two factors:

eThe number of processes spawned. The pubenchmark has been executed for 1,2, 5, 10
and 20 processes. In addition, the multiprocessor test has been executed for 50 and
100 processes.

eThe amount of time wasted between increments in the loop. The ubenchmark has been
executed for 0, 1, 50, 100, 200 and 500 ns. This time, of course, is not taken into
account when measuring the increment. The rationale behind adding this parameter is
twofold. First, small values of this delay (waste) try to compensate the effect on con-
tention of the time taken to perform the ainc. A faster ainc would have a higher rate
of operations executed, and thus, higher contention. When waste is much bigger than
the time taken to perform an ainc, the contention only depends on the number of pro-
cesses and size of waste, and not on the time to perform of the operation itself. Sec-
ond, the delay allows us to measure the operation in different contention scenarios for
the same number of processes and processors.

The core of the program is (in pseudocode):

poll until all procs ready
for i in 1..1000
tl = taketime()
ainc(v)
t2 = taketime()
times[i] = t2 - tl1
do
wastesometime ()
t3 = taketime()
while t3-tl1l < Waste
endloop

We take the time using the time stamp counter, by using the RDTSC instruction. Notice
that in the multiprocessor case, the hardware counters are synchronized on boot. We
booted the machine for each execution of the pbenchmark. The drift of the counters for
the time taken to perform the measurements is negligible.

Results

What follows depicts Tukey diagrams of the measurements. The labels shown in the
graphs are:

elainc—align: the ainc implementation based on the LOCK prefix, value aligned to
64 byte.

elainc—noalign: the ainc implementation based on the LOCK prefix, value
unaligned to 64 byte, aligned to 32 byte.

elockfreeainc: the lock-free ainc implementation based on compare-and-swap.
el ock: the ainc implementation using spin locks.

The most surprising result is that for the multiprocessor case, the spin lock version is
much faster than the other implementations. This is not what we expected. All the

implementations end up using a LOCK prefix instruction (note that there is an implicit
LOCK prefix in the XCHGL instruction). In addition, the spin lock implementation

Proceedings of the 7th International Workshop on Plan 9 59 Bell Labs Ireland, November 14-16, 2012

16407 -
1e+06 -
1e+05-
e Primitive
I i : H $ lainc-align
2 ‘ ;
° ‘ — lainc-noalign
£ [i B8 lock
= I |
16404~ ‘ i | ‘ B9 lockiree-ainc
! i
i %
Ty |
i i H
1403~ 1 “ i i I
i [
*&] [B
|
i 1 1
i .
I | N |
10402 |
56101 o obe dbbd i1 [EEREAREEL ALt
i | | | ' |
1 2 10 20 0 100
#Procs
10407 -
16406 -
1e+05 -
i Primitive
Tg \ E lainc-align
g | ‘ B8 lainc-noalign
£ 1 i lock
IS | g — lock
1e+04 : | i B8 lockiree-ainc
' +
!
T w‘! | W
| i f
16403~ i T i [‘ T
i |
i ’ i | £ ‘ !
ﬁ i | ol 'm
1e+02 - , f
56401~ 4 qtng]
| | | | |) |
1 2 5 10 20 50 100
#Procs

1e+07 -
1e+06 -
Te+05- Primitive
@ i $ lainc-align
£ H
e | | l B lainc-noalign
E ‘ - i B8 lock
Te+04- - : I i B9 lockiree-ainc
i ! !
1 ' -‘#
T ‘
| I
1e+03- ++ l ‘ S
| ' il [
i i 1]
I [B R
% I
16402~ ‘
Se+01- e u L i i B . .
| | | | ' |
1 2 5 10 20 50 100
#Procs
1e407 -
16406 -
1e+405 -
Primitive
% | B8 lainc-align
£ ! | . .
© ' i ‘ — lainc-noalign
£ i N |
F jes04- I5 o B o
: | ; | B8 lockfree-ainc
I -
. i
| i
< ! i
| i | ‘
1e+03 - i SRt i |
ﬂ’l’ | a e ‘
w il i R
L I |
. | I
1e402- FRPS
50401~ (obg IMIj 1 i I
| | | | ' |
1 2 5 10 20 0 100
#Procs

Figure 1: NIX on AMD64, 32 cores, (A) waste = 0 ns, (B) waste = 50 ns, (C) waste = 200 ns, (D) waste = 500 ns
requires to execute more instructions and an extra function call (unlock).

It may well be that the backoff of the spin locks is responsible for their efficiency in the
Nevertheless, note that in Figure 2 (A), for 1 process (i.e. no con-
tention), the spin locks are better than the other implementations. This may be due to
the effect of extreme flooding in the coherency fabric. This kind of effect is what we
tried to correct by using different waste values. There seems to be no effect associated
to the alignment of the values.

multicore case.

Proceedings of the 7th International Workshop on Plan 9

60

Bell Labs Ireland, November 14-16, 2012

400 -

350 -

300~

Primitive

— lainc-align
— lainc-noalign
— lock

— lockfree-ainc

250 -

Time (ns)

200~

150 - =

100 -

50
! | |

5 1
#Procs

C

400 -

Primitive

— lainc-align
— lainc-noalign
— lock

— lockfree-ainc

Time (ns)

M
| I
0 20
350~
300
250~
200
-
150 -
-
- .
.
100 -
50—
| |
10 20

5
#Procs

Figure 2: NIX on AMD64, 1 core, (A) waste = 0 ns, (B) waste = 50 ns, (C) waste = 200 ns, (D) waste = 500 ns
Notice also that, except for one case (Figure 2 (C)), the lock-free version seems to per-

Time (ns)
%

N
3
3

150 -
100 -

50 -

350 -

D
R j Ja
2 ; 1‘0 2‘0

Time (ns)

50 -

7 -
- e
I | | | I
1 2 10 20

Primitive

— lainc-align
— lainc-noalign
— lock

— lockfree-ainc

5
#Procs

Primitive

— lainc-align
— lainc-noalign
— lock

— lockfree-ainc

5
#Procs

form equal or worse than the other implementations.
In the 386 experiments, the results show more predictable results. The interesting

result in these experiments is that the lock-free implementation is still worse than the

others. This is easy to understand if the CMPXCHGL is as expensive as the XADDL with
the LOCK prefix, because the lock-free implementation requires more instructions and
may need several attempts to perform the operation.

Proceedings of the 7th International Workshop on Plan 9

61 Bell Labs Ireland, November 14-16, 2012

140- 40-

_120- Primitive 120~ Primitive
) ! ! m]]]
£ [& | | B3 lainc-align = |] B8 lainc-align
E — - . B lock °E> —— B lock
= - = s . - B8 lockiree—ainc = D B B8 lockfree-ainc
.
100~ 100-
i | | | | i |) |
1 2 5 10 20 1 2 5 10 20
#Procs #Procs
140- 140-

Primitive 120~ * + Primitive
B2 lainc-align | | | s B2 lainc-align
-

B8 lock =l B8 lock
E lockfree-ainc i -~ . E lockfree-ainc

100 - 00-

Time (ns)

Time (ns)
t

t
a
=
-
.

#Procs

Figure 3: Plan9 on 386, 1 core, (A) waste = 0 ns, (B) waste = 50 ns, (C) waste = 200 ns, (D) waste = 500 ns
Conclusions and Future Work

We can conclude that the lock-free implementation is not the best choice in any case, at
least with the current implementation of the instructions for these architectures.
Between the two other implementations, it is difficult to conclude which one is better.
For the 386 experiment there is a 10% gain when using the lock prefix implementation.
On the other hand, in most cases for the multiprocessor it seems to be better to use
the spin lock implementation. When using only 1 core, the results are (more or less)

Proceedings of the 7th International Workshop on Plan 9 62 Bell Labs Ireland, November 14-16, 2012

balanced. Nevertheless, when using 32 cores, the spin lock version is much better.
Another argument in favor of the spin lock version is that spin locks are already needed
as a general purpose synchronization primitive.

Last, note that the AMP scheduler of NIX is new, so there may be lurking bugs affecting
the results of the experiments.

References

1. T. E. Anderson, E. D. Lazowska and H. M. Levy, The performance implications of
thread management alternatives for shared-memory multiprocessors, IEEE Trans-
actions on Computers 38,12 1631-1644.

2. F.J. Ballesteros, N. Evans, C. Forsyth, G. Guardiola, J. McKie, R. Minnich and E. Sori-
ano, Nix: a case for a manycore system for cloud computing, Bell Labs Technical
Journal 17,2 41-54,

3. A. M. D. Inc., AMD64 Architecture Programmer’s Manual Volume 3: General-
Purpose and System Instructions.

4. T. Johnson, Characterizing the performance of algorithms for lock-free objects,
IEEE Transactions on Computers 44, 10 1194-1207.

Proceedings of the 7th International Workshop on Plan 9 63 Bell Labs Ireland, November 14-16, 2012

	Proceedings of the 7th International Workshop on Plan 9.pdf
	iwp97e-papers.pdf
	aram_spyros_iwp9_2012.pdf
	searchpath.pdf
	iwp9.pdf
	piepea.pdf
	Crypto_Performance.pdf
	term.pdf
	IWP9-Submitted.pdf
	ainc.pdf

